Record ID | marc_columbia/Columbia-extract-20221130-006.mrc:342866891:2673 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-006.mrc:342866891:2673?format=raw |
LEADER: 02673mam a22003374a 4500
001 2803480
005 20221013014026.0
008 000502t20002000nyua b 001 0 eng
010 $a 00034216
020 $a0465037704
035 $a(OCoLC)ocm44045671
035 $9ARS2645CU
035 $a2803480
040 $aDLC$cDLC$dC#P$dOrLoB-B
042 $apcc
050 00 $aQA141.15$b.L37 2000
082 00 $a510$221
100 1 $aLakoff, George.$0http://id.loc.gov/authorities/names/n80013013
245 10 $aWhere mathematics comes from :$bhow the embodied mind brings mathematics into being /$cGeorge Lakoff, Rafael E. Núñez.
260 $aNew York :$bBasic Books,$c[2000], ©2000.
300 $axvii, 493 pages :$billustrations ;$c25 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references (p. 453-472) and index.
505 00 $tIntroduction: Why Cognitive Science Matters to Mathematics --$g1.$tThe Brain's Innate Arithmetic --$g2.$tA Brief Introduction to the Cognitive Science of the Embodied Mind --$g3.$tEmbodied Arithmetic: The Grounding Metaphors --$g4.$tWhere Do the Laws of Arithmetic Come From? --$g5.$tEssence and Algebra --$g6.$tBoole's Metaphor: Classes and Symbolic Logic --$g7.$tSets and Hypersets --$g8.$tThe Basic Metaphor of Infinity --$g9.$tReal Numbers and Limits --$g10.$tTransfinite Numbers --$g11.$tInfinitesimals --$g12.$tPoints and the Continuum --$g13.$tContinuity for Numbers: The Triumph of Dedekind's Metaphors --$g14.$tCalculus Without Space or Motion: Weierstrass's Metaphorical Masterpiece --$g15.$tThe Theory of Embodied Mathematics --$g16.$tThe Philosophy of Embodied Mathematics --$gCase Study 1.$tAnalytic Geometry and Trigonometry --$gCase Study 2.$tWhat Is e? --$gCase Study 3.$tWhat Is i? --$gCase Study 4.$te[superscript [pi]i] + 1 = 0 -- How the Fundamental Ideas of Classical Mathematics Fit Together.
520 1 $a"This book is about mathematical ideas, about what mathematics means - and why. It is concerned not just with which theorems are true, but with what theorems mean and why they are true by virtue of what they mean. And it provides an answer to one of the deepest problems of the philosophy of mathematics: how a being with a finite brain and mind can comprehend infinity."--BOOK JACKET.
650 0 $aNumber concept.$0http://id.loc.gov/authorities/subjects/sh85093206
650 0 $aMathematics$xPsychological aspects.
650 0 $aMathematics$xPhilosophy.$0http://id.loc.gov/authorities/subjects/sh85082153
700 1 $aNúñez, Rafael E.,$d1960-$0http://id.loc.gov/authorities/names/n00004423
852 00 $boff,psy$hQA141.15$i.L37 2000