Record ID | marc_columbia/Columbia-extract-20221130-006.mrc:435245714:2657 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-006.mrc:435245714:2657?format=raw |
LEADER: 02657mam a2200349 a 4500
001 2971250
005 20221013043631.0
008 980914t20002000maua b 000 0 eng d
020 $a1571460616
035 $a(OCoLC)ocm44548665
035 $9ASL7724CU
035 $a(NNC)2971250
035 $a2971250
040 $aHLS$cHLS$dUMC$dNNC$dOrLoB-B
090 $aQA613.2$b.T38 2000
100 1 $aTaubes, Clifford,$d1954-$0http://id.loc.gov/authorities/names/n80095384
245 10 $aSeiberg Witten and Gromov invariants for symplectic 4-manifolds /$cClifford Henry Taubes ; edited by Richard Wentworth.
260 $aSomerville, MA :$bInternational Press,$c[2000], ©2000.
300 $aiv, 401 pages :$billustrations ;$c25 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aFirst International Press lecture series ;$vv. 2
504 $aIncludes bibliographical references.
505 00 $tSW [approaches] Gr.$g1.$tThe Seiberg-Witten equations.$g2.$tEstimates.$g3.$tThe monotonicity formula.$g4.$tThe local structure of [alpha][superscript -1](0).$g5.$tConvergence to a current.$g6.$tPositivity and pseudo-holomorphic curves.$g7.$tConstraints on symplectic 4-manifolds --$tCounting pseudo-holomorphic submanifolds in dimension 4.$g1.$tThe definition of Gr.$g2.$tThe definition of r(C,1).$g3.$tThe definition of r(C,m) when m > 1.$g4.$tThe meaning of the term "admissable"$g5.$tThe proofs.$g6.$tA toroidal example.$g7.$tD on other surfaces --$tGr [approaches] SW.$g1.$tSetting the stage.$g2.$tThe gluing construction.$g3.$tIntroduction to Z[subscript o] and Z.$g4.$tFrom almost solutions to true solutions, I.$g5.$tFrom almost solutions to true solutions, II.$g6.$tAnalytic structures --$tGr = SW.$g1.$tSeiberg-Witten and Gromov-Witten Invariants.$g2.$tThe proof of Theorem 1.$g3.$tZ[subscript o] and compactness: The proof of Proposition 2.7.$g4.$tOrientations and other constructions for M[superscript (r)].
505 80 $g5.$tThe Proof of Proposition 2.10.$g6.$tThe image of [psi][subscript r].$g7.$tProof of Proposition 2.13.
650 0 $aFour-manifolds (Topology)$0http://id.loc.gov/authorities/subjects/sh85051082
650 0 $aSymplectic manifolds.$0http://id.loc.gov/authorities/subjects/sh85131553
650 0 $aSeiberg-Witten invariants.$0http://id.loc.gov/authorities/subjects/sh95008398
700 1 $aWentworth, Richard.$0http://id.loc.gov/authorities/names/nr2002036034
711 2 $aInternational Press Lecture Series$n(1st :$d1996 :$cIrvine, Calif.)
830 0 $aFirst International Press lecture series ;$vv. 2.$0http://id.loc.gov/authorities/names/nr2002036033
852 00 $bmat$hQA613.2$i.T384 2000g