Record ID | marc_columbia/Columbia-extract-20221130-006.mrc:457488700:3181 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-006.mrc:457488700:3181?format=raw |
LEADER: 03181fam a22003854a 4500
001 2992104
005 20221019183340.0
008 000718t20012001nyua b 001 0 eng
010 $a 00060101
020 $a0824704606 (alk. paper)
035 $a(OCoLC)44712828
035 $a(OCoLC)ocm44712828
035 $9ASN9670CU
035 $a(NNC)2992104
035 $a2992104
040 $aDLC$cDLC$dDLC$dOrLoB-B
042 $apcc
050 00 $aQA297$b.H22 2001
082 00 $a512/.55$221
100 1 $aHagen, Roland,$d1953-$0http://id.loc.gov/authorities/names/n94079960
245 10 $aC*-algebras and numerical analysis /$cRoland Hagen, Steffen Roch, Bernd Silbermann.
260 $aNew York :$bMarcel Dekker,$c[2001], ©2001.
300 $a376 pages :$billustrations ;$c24 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aMonographs and textbooks in pure and applied mathematics ;$v236
504 $aIncludes bibliographical references (p. 357-371) and index.
505 00 $g1.$tThe algebraic language of numerical analysis.$g1.1.$tApproximation methods.$g1.2.$tBanach algebras and stability.$g1.3.$tFinite sections of Toeplitz of Toeplitz operators with continuous generating function.$g1.4.$tC-algebras of approximation sequences.$g1.5.$tAsymptotic behaviour of condition numbers.$g1.6.$tFractality of approximation methods --$g2.$tRegularization of approximation methods.$g2.1.$tStably regularizable sequences.$g2.2.$tAlgebraic characterization of stably regularizable sequences --$g3.$tApproximation of spectra.$g3.1.$tSet sequences.$g3.2.$tSpectra and their limiting sets.$g3.3.$tPseudospectra and their limiting sets.$g3.4.$tNumerical ranges and their limiting sets --$g4.$tStability analysis for concrete approximation methods.$g4.1.$tLocal principles.$g4.2.$tFinite sections of Toeplitz operators generated by a piecewise continuous function.$g4.3.$tPinite sections of Toeplitz operators generated by a quasicontinuous function.
505 80 $g4.4.$tPolynomial collocation methods for singular integral operators with piecewise continuous coefficients.$g4.5.$tPaired circulants and spline approximation methods.$g4.6.$tFinite sections of band-dominated operators --$g5.$tRepresentation theory.$g5.1.$tRepresentations.$g5.2.$tPostliminal algebras.$g5.3.$tLifting theorems and representation theory --$g6.$tFredholm sequences.$g6.1.$tFredholm sequences in standard algebras.$g6.2.$tFredholm sequences and the asymptotic behavior of singular values.$g6.3.$tA general Fredholm theory.$g6.4.$tWeakly Fredholm sequences.$g6.5.$tSome applications --$g7.$tSelf-adjoint approximation sequences.$g7.1.$tThe spectrum of a self-adjoint approximation sequence.$g7.2.$tSzego-type theorems.
650 0 $aNumerical analysis.$0http://id.loc.gov/authorities/subjects/sh85093237
650 0 $aC*-algebras.$0http://id.loc.gov/authorities/subjects/sh85018534
700 1 $aRoch, Steffen,$d1958-$0http://id.loc.gov/authorities/names/n94079964
700 1 $aSilbermann, Bernd,$d1941-$0http://id.loc.gov/authorities/names/n80011110
830 0 $aMonographs and textbooks in pure and applied mathematics ;$v236.
852 00 $bmat$hQA297$i.H22 2001