Record ID | marc_columbia/Columbia-extract-20221130-006.mrc:53484562:2996 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-006.mrc:53484562:2996?format=raw |
LEADER: 02996mam a22003734a 4500
001 2546180
005 20221012191858.0
008 991008t20002000nyua b 001 0 eng
010 $a 99052753
020 $a0387989471 (hard cover : alk. paper)
035 $a(OCoLC)ocm42649825
035 $9AQM8297CU
035 $a2546180
040 $aDLC$cDLC$dEYE$dC#P$dOHX$dOrLoB-B
042 $apcc
050 00 $aQA1$b.A647 vol. 141$aQC20.7.T65
072 7 $aQA$2lcco
082 00 $a510 s$a530.15/4$221
100 1 $aNaber, Gregory L.,$d1948-$0http://id.loc.gov/authorities/names/n87944172
245 10 $aTopology, geometry, and gauge fields :$binteractions /$cGregory L. Naber.
260 $aNew York :$bSpringer,$c[2000], ©2000.
300 $axiii, 443 pages :$billustrations ;$c25 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aApplied mathematical sciences ;$vv. 141
504 $aIncludes bibliographical references (p. 425-429) and index.
505 00 $gCh. 1.$tGeometrical Background.$g1.1.$tSmooth Manifolds and Maps.$g1.2.$tMatrix Lie Groups.$g1.3.$tPrincipal Bundles.$g1.4.$tConnections and Curvature.$g1.5.$tAssociated Bundles and Matter Fields --$gCh. 2.$tPhysical Motivation.$g2.1.$tGeneral Framework For Classical Gauge Theories.$g2.2.$tElectromagnetic Fields.$g2.3.$tSpin Zero Electrodynamics.$g2.4.$tSpin One-Half Electrodynamics.$g2.5.$tSU (2)-Yang-Mills-Higgs Theory on R[Superscript n] --$gCh. 3.$tFrame Bundles and Spacetimes.$g3.1.$tPartitions of Unity, Riemannian Metrics and Connections.$g3.2.$tContinuous Versus Smooth.$g3.3.$tFrame Bundles.$g3.4.$tMinkowski Spacetime.$g3.5.$tSpacetime Manifolds and Spinor Structures --$gCh. 4.$tDifferential Forms and Integration.$g4.1.$tMultilinear Alegbra.$g4.2.$tVector-Valued Forms.$g4.3.$tDifferential Forms.$g4.4.$tThe de Rham Complex.$g4.5.$tTensorial Forms.$g4.6.$tIntegration on Manifolds.$g4.7.$tStokes' Theorem --$gCh. 5.$tde Rham Cohomology.$g5.1.$tThe de Rham Cohomology Groups.
505 80 $g5.2.$tInduced Homomorphisms.$g5.3.$tCochain Complexes and Their Cohomology.$g5.4.$tThe Mayer- Vietoris Sequence.$g5.5.$tThe Cohomology of Compact, Orientable Manifolds.$g5.6.$tThe Brouwer Degree.$g5.7.$tThe Hopf Invariant --$gCh. 6.$tCharacteristic Classes.$g6.1.$tMotivation.$g6.2.$tAlgebraic Preliminaries.$g6.3.$tThe Chern-Weil Homomorphism.$g6.4.$tChern Numbers.$g6.5.$tZ[Subscript 2]-Cech Cohomology for Smooth Manifolds.$gAppendix.$tSeiberg-Witten Monopoles on R[Superscript 4].
650 0 $aTopology.$0http://id.loc.gov/authorities/subjects/sh85136089
650 0 $aGeometry.$0http://id.loc.gov/authorities/subjects/sh85054133
650 0 $aGauge fields (Physics)$0http://id.loc.gov/authorities/subjects/sh85053534
650 0 $aMathematical physics.$0http://id.loc.gov/authorities/subjects/sh85082129
830 0 $aApplied mathematical sciences (Springer-Verlag New York Inc.) ;$vv. 141.$0http://id.loc.gov/authorities/names/n42002591
852 00 $bmat$hQC20.7.T65$iN33 2000