Record ID | marc_columbia/Columbia-extract-20221130-006.mrc:53554157:4149 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-006.mrc:53554157:4149?format=raw |
LEADER: 04149mam a22003974a 4500
001 2546217
005 20221012191903.0
008 991209t20002000nyua b 001 0 eng
010 $a 99089121
020 $a0471175412 (acid-free paper)
035 $a(OCoLC)ocm42980297
035 $9AQM8374CU
035 $a(NNC)2546217
035 $a2546217
040 $aDLC$cDLC$dC#P$dOrLoB-B
042 $apcc
050 00 $aQA166.17$b.J36 2000
082 00 $a511/.5$221
100 1 $aJanson, Svante.$0http://id.loc.gov/authorities/names/n91116295
245 10 $aRandom graphs /$cSvante Janson, Tomasz Łuczak, Andrzej Rucinski.
260 $aNew York :$bJohn Wiley,$c[2000], ©2000.
300 $axi, 333 pages :$billustrations ;$c25 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aWiley-Interscience series in discrete mathematics and optimization
500 $a"A Wiley-Interscience publication."
504 $aIncludes bibliographical references (p. 307-325) and indexes.
505 00 $g1.$tPreliminaries.$g1.1.$tModels of random graphs.$g1.2.$tNotes on notation and more.$g1.3.$tMonotonicity.$g1.4.$tAsymptotic equivalence.$g1.5.$tThresholds.$g1.6.$tSharp thresholds --$g2.$tExponentially Small Probabilities.$g2.1.$tIndependent summands.$g2.2.$tBinomial random subsets.$g2.3.$tSuen's inequality.$g2.4.$tMartingales.$g2.5.$tTalagrand's inequality.$g2.6.$tThe upper tail --$g3.$tSmall Subgraphs.$g3.1.$tThe containment problem.$g3.2.$tLeading overlaps and the subgraph plot.$g3.3.$tSubgraph count at the threshold.$g3.4.$tThe covering problem.$g3.5.$tDisjoint copies.$g3.6.$tVariations on the theme --$g4.$tMatchings.$g4.1.$tPerfect matchings.$g4.2.$tG-factors.$g4.3.$tTwo open problems --$g5.$tThe Phase Transition.$g5.1.$tThe evolution of the random graph.$g5.2.$tThe emergence of the giant component.$g5.3.$tThe emergence of the giant: A closer look.$g5.4.$tThe structure of the giant component.$g5.5.$tNear the critical period.$g5.6.$tGlobal properties and the symmetry rule.
505 80 $g5.7.$tDynamic properties --$g6.$tAsymptotic Distributions.$g6.1.$tThe method of moments.$g6.2.$tStein's method: The Poisson case.$g6.3.$tStein's method: The normal case.$g6.4.$tProjections and decompositions.$g6.5.$tFurther methods --$g7.$tThe Chromatic Number.$g7.1.$tThe stability number.$g7.2.$tThe chromatic number: A greedy approach.$g7.3.$tThe concentration of the chromatic number.$g7.4.$tThe chromatic number of dense random graphs.$g7.5.$tThe chromatic number of sparse random graphs.$g7.6.$tVertex partition properties --$g8.$tExtremal and Ramsey Properties.$g8.1.$tHeuristics and results.$g8.2.$tTriangles: The first approach.$g8.3.$tThe Szemeredi Regularity Lemma.$g8.4.$tA partition theorem for random graphs.$g8.5.$tTriangles: An approach with perspective --$g9.$tRandom Regular Graphs.$g9.1.$tThe configuration model.$g9.2.$tSmall cycles.$g9.3.$tHamilton cycles.$g9.4.$tProofs.$g9.5.$tContiguity of random regular graphs.$g9.6.$tA brief course in contiguity --$g10.$tZero-One Laws.$g10.1.$tPreliminaries.
505 80 $g10.2.$tEhrenfeucht games and zero-one laws.$g10.3.$tFilling gaps.$g10.4.$tSums of models.$g10.5.$tSeparability and the speed of convergence.
520 1 $a"Written by three members of the discrete mathematics community, the book incorporates many disparate results from across the literature, including results obtained by the authors and some completely new results. Current tools and techniques are also thoroughly emphasized. Clear, easily accessible presentations make Random Graphs an ideal introduction for newcomers to the field and an excellent reference for scientists interested in discrete mathematics and theoretical computer science."--BOOK JACKET.
650 0 $aRandom graphs.$0http://id.loc.gov/authorities/subjects/sh85111348
700 1 $aŁuczak, Tomasz.$0http://id.loc.gov/authorities/names/n2007079533
700 1 $aRuciński, Andrzej.$0http://id.loc.gov/authorities/names/n85381928
830 0 $aWiley-Interscience series in discrete mathematics and optimization.$0http://id.loc.gov/authorities/names/n86748397
852 00 $bmat$hQA166.17$i.J36 2000