It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-007.mrc:231002491:2606
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-007.mrc:231002491:2606?format=raw

LEADER: 02606mam a22003497a 4500
001 3230489
005 20221020012804.0
008 020205t20012001nju 000 0 eng d
010 $a 2002265584
020 $a9810247184 (acid-free paper)
035 $a(OCoLC)48887834
035 $a(OCoLC)ocm48887834
035 $9AUK2264CU
035 $a(NNC)3230489
035 $a3230489
040 $aTEF$cDLC$dOrLoB-B
041 1 $aeng$hchi
042 $alccopycat
050 00 $aQA372$b.N653 2001
082 00 $a515/.352$221
245 00 $aNonlinear diffusion equations /$cZhuoqun Wu [and others].
260 $aRiver Edge, NJ :$bWorld Scientific,$c[2001], ©2001.
300 $axvii, 502 pages ;$c23 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
500 $a"The first edition of this book published in 1996 was written in Chinese. The present edition is basically an English translation of the first edition"--P. xi.
504 $aIncludes bibliographical references (p. 479-502).
505 00 $gCh. 1.$tNewtonian Filtration Equations.$tExistence and Uniqueness of Solutions: One Dimensional Case.$tExistence and Uniqueness of Solutions: Higher Dimensional Case.$tRegularity of Solutions: One Dimensional Case.$tRegularity of Solutions: Higher Dimensional Case.$tProperties of the Free Boundary: One Dimensional Case.$tProperties of the Free Boundary: Higher Dimensional Case.$tInitial Trace of Solutions.$tOther Problems --$gCh. 2.$tNon-Newtonian Filtration Equations.$tExistence of Solutions.$tHarnack Inequality and the Initial Trace of Solutions.$tRegularity of Solutions.$tUniqueness of Solutions.$tProperties of the Free Boundary.$tOther Problems --$gCh. 3.$tGeneral Quasilinear Equations of Second Order.$tWeakly Degenerate Equations in One Dimension.$tWeakly Degenerate Equations in Higher Dimension.$tStrongly Degenerate Equations in One Dimension.$tDegenerate Equations in Higher Dimension without Terms of Lower Order.$tGeneral Strongly Degenerate Equations in Higher Dimension.
505 80 $tAppendix: Classes BV and BV[subscript x] --$gCh. 4.$tNonlinear Diffusion Equations of Higher Order.$tSimilarity Solutions of a Fourth Order Equation.$tEquations with Double-Degeneracy.$tCahn-Hilliard Equation with Constant Mobility.$tCahn-Hilliard Equations with Positive Concentration Dependent Mobility.$tThin Film Equation.$tCahn-Hilliard Equation with Degenerate Mobility.
650 0 $aBurgers equation.$0http://id.loc.gov/authorities/subjects/sh85018060
700 1 $aWu, Zhuoqun.$0http://id.loc.gov/authorities/names/no2003038085
852 00 $bmat$hQA372$i.N653 2001