Record ID | marc_columbia/Columbia-extract-20221130-007.mrc:231502939:4136 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-007.mrc:231502939:4136?format=raw |
LEADER: 04136mam a22003974a 4500
001 3230809
005 20221020012851.0
008 001129t20022002nyua b 001 0 eng
010 $a 00067917
020 $a0387984658 (alk. paper)
020 $a3540984658 (Berlin : hd.bd.)
035 $a(OCoLC)50387397
035 $a(OCoLC)ocm50387397
035 $9AUK2640CU
035 $a(NNC)3230809
035 $a3230809
040 $aDLC$cDLC$dC#P$dOHX$dOrLoB-B
042 $apcc
050 00 $aQA564$b.M38 2002
072 7 $aQA$2lcco
082 00 $a516.3/53$221
100 1 $aMatsuki, Kenji,$d1958-$0http://id.loc.gov/authorities/names/n95033563
245 10 $aIntroduction to the Mori Program /$cKenji Matsuki.
260 $aNew York :$bSpringer,$c[2002], ©2002.
300 $axxiii, 478 pages :$billustrations ;$c25 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aUniversitext
504 $aIncludes bibliographical references (p. [455]-468) and index.
505 00 $tIntroduction: The Tale of the Mori Program --$g1.$tBirational Geometry of Surfaces.$g1.1.$tCastelnuovo's Contractibility Criterion.$g1.2.$tSurfaces Whose Canonical Bundles Are Not Nef I.$g1.3.$tSurfaces Whose Canonical Bundles Are Not Nef II.$g1.4.$tBasic Properties of Mori Fiber Spaces in Dimension 2.$g1.5.$tBasic Properties of Minimal Models in Dimension 2.$g1.6.$tBasic Properties of Canonical Models in Dimension 2.$g1.7.$tThe Enriques Classification of Surfaces.$g1.8.$tBirational Relation Among Surfaces --$g2.$tLogarithmic Category.$g2.1.$tIitaka's Philosophy.$g2.2.$tLog Birational Geometry of Surfaces --$g3.$tOverview of the Mori Program.$g3.1.$tMinimal Model Program in Dimension 3 or Higher.$g3.2.$tBasic Properties of Mori Fiber Spaces in Dimension 3 or Higher.$g3.3.$tBasic Properties of Minimal Models in Dimension 3 or Higher.$g3.4.$tBirational Relations Among Minimal Models and Mori Fiber Spaces in Dimension 3 or Higher.$g3.5.$tVariations of the Mori Program --$g4.$tSingularities.
505 80 $g4.1.$tTerminal Singularities.$g4.2.$tCanonical Singularities.$g4.3.$tLogarithmic Variations.$g4.4.$tDiscrepancy and Singularities.$g4.5.$tCanonical Cover.$g4.6.$tClassification in Dimension 2 --$g5.$tVanishing Theorems.$g5.1.$tKodaira Vanishing Theorem.$g5.2.$tKawamata-Viehweg Vanishing Theorem --$g6.$tBase Point Freeness of Adjoint Linear Systems.$g6.1.$tRelevance of Log Category to Base Point Freeness of Adjoint Linear Systems.$g6.2.$tBase Point Freeness Theorem.$g6.3.$tNonvanishing Theorem of Shokurov --$g7.$tCone Theorem.$g7.1.$tRationality Theorem and Boundedness of the Denominator.$g7.2.$tCone Theorem --$g8.$tContraction Theorem.$g8.1.$tContraction Theorem.$g8.2.$tContractions of Extremal Rays.$g8.3.$tExamples --$g9.$tFlip.$g9.1.$tExistence of Flip.$g9.2.$tTermination of Flips --$g10.$tCone Theorem Revisited.$g10.1.$tMori's Bend and Break Technique.$g10.2.$tA Proof in the Smooth Case After Mori.$g10.3.$tLengths of Extremal Rays --$g11.$tLogarithmic Mori Program.
505 80 $g11.1.$tLog Minimal Model Program in Dimension 3 or Higher.$g11.2.$tLog Minimal Models and Log Mori Fiber Spaces in Dimension 3 or Higher.$g11.3.$tBirational Relations Among Log Minimal Models and Log Mori Fiber Spaces --$g12.$tBirational Relation among Minimal Models.$g12.1.$tFlops Among Minimal Models.$g12.2.$tChamber Structure of Ample Cones of Minimal Models.$g12.3.$tThe Number of Minimal Models Is Finite (?!) --$g13.$tBirational Relation Among Mori Fiber Spaces.$g13.1.$tSarkisov Program.$g13.2.$tTermination of the Sarkisov Program.$g13.3.$tApplications --$g14.$tBirational Geometry of Toric Varieties.$g14.1.$tCone Theorem and Contraction Theorem for Toric Varieties.$g14.2.$tToric Extremal Contractions and Flips.$g14.3.$tToric Canonical and Log Canonical Divisors.$g14.4.$tToric Minimal Model Program.$g14.5.$tToric Sarkisov Program.
650 0 $aAlgebraic varieties$xClassification theory.$0http://id.loc.gov/authorities/subjects/sh85003440
830 0 $aUniversitext.$0http://id.loc.gov/authorities/names/n42025686
852 00 $bmat$hQA564$i.M38 2002
852 00 $bmat$hQA564$i.M38 2002