It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-007.mrc:312437057:2338
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-007.mrc:312437057:2338?format=raw

LEADER: 02338mam a2200313 a 4500
001 3311995
005 20221020034909.0
008 020730t20022002nyu b 001 0 eng d
020 $a1590332318
035 $a(OCoLC)ocm50264513
035 $9AUV6183CU
035 $a3311995
040 $aNAT$cNAT$dOrLoB-B
041 0 $aeng
090 $aQA402.3$b.K72 2002
100 1 $aKrabs, Werner,$d1934-$0http://id.loc.gov/authorities/names/n82252318
245 10 $aOn controllability of linear vibrations /$cW. Krabs and G.M. Skylar.
260 $aHuntington, New York :$bNova Science Publishers,$c[2002], ©2002.
300 $a163 pages ;$c24 cm +$e1 CD-ROM (4 3/4 in.).
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references (p. [159]) and index.
505 00 $g1.$tNull-Controllability of Undamped Linear Vibrations.$g1.1.$tDistributed Control.$g1.2.$tBoundary H[superscript 2]-Control.$g1.3.$tThe Problem of Null-Controllability.$g1.4.$tOn the Solution of the Problem of Null-Controllability.$g1.5.$tBoundary Null-Controllability with H[superscript 1]-Controls.$g1.6.$tApproximate Boundary Null-Controllability with H[superscript 2]-Controls --$g2.$tNull-Controllability of Damped Linear Vibrations.$g2.1.$tDistributed Control.$g2.2.$tBoundary Control --$g3.$tOn the Controllability of a Rotating Beam.$g3.1.$tThe Model Equations and their Solution.$g3.2.$tThe Problem of Controllability from Rest to Rest.$g3.3.$tThe Asymptotic Behaviour of the Eigenvalues of the Operator A in (3.3).$g3.4.$tOn Controllability from Rest to Rest.$g3.5.$tOn Approximate Controllability from Rest to an Arbitrary Position.$g3.6.$tThe Limit Case [subscript [gamma]][superscript 2] = [actual symbol not reproducible] = [infinity].$g3.7.$tThe Stabilizability.
505 80 $g3.8.$tOn Control and Stabilization with the Aid of the Torque.$gA.1.$tLinear Operators --$gA.2.$tSemigroups of Linear Operators --$gA.3.$tStrong Stabilizability of Evolution Equations --$gA.4.$tModeling a Rotating Beam.
650 0 $aVibration.$0http://id.loc.gov/authorities/subjects/sh85143117
650 0 $aControl theory.$0http://id.loc.gov/authorities/subjects/sh85031658
650 0 $aStability.$0http://id.loc.gov/authorities/subjects/sh85127185
700 1 $aSklyar, G. M.
852 00 $boff,eng$hQA402.3$i.K72 2002g