Record ID | marc_columbia/Columbia-extract-20221130-007.mrc:417518354:2860 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-007.mrc:417518354:2860?format=raw |
LEADER: 02860mam a22003854a 4500
001 3405311
005 20221020065453.0
008 021021t20032003maua b 001 0 eng
010 $a 2002034519
020 $a0817642951 (alk. paper)
020 $a3764342951 (alk. paper)
035 $a(OCoLC)ocm50859396
035 $9AVK3886CU
035 $a(NNC)3405311
035 $a3405311
040 $aDLC$cDLC$dC#P$dOrLoB-B
042 $apcc
050 00 $aQA433$b.C47 2003
082 00 $a515/.63$221
100 1 $aChristensen, Ole,$d1966-$0http://id.loc.gov/authorities/names/n2002162777
245 13 $aAn introduction to frames and Riesz bases /$cOle Christensen.
260 $aBoston :$bBirkhäuser,$c[2003], ©2003.
300 $axx, 440 pages :$billustrations ;$c25 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aApplied and numerical harmonic analysis
504 $aIncludes bibliographical references (p. [421]-436) and index.
505 00 $g1.$tFrames in Finite-dimensional Inner Product Spaces -- $g2.$tInfinite-dimensional Vector Spaces and Sequences -- $g3.$tBases -- $g4.$tBases and their Limitations -- $g5.$tFrames in Hilbert Spaces -- $g6.$tFrames versus Riesz Bases -- $g7.$tFrames of Translates -- $g8.$tGabor Frames in L[superscript 2](R) -- $g9.$tSelected Topics on Gabor Frames -- $g10.$tGabor Frames in l[superscript 2](Z) -- $g11.$tGeneral Wavelet Frames -- $g12.$tDyadic Wavelet Frames -- $g13.$tFrame Multiresolution Analysis -- $g14.$tWavelet Frames via Extension Principles -- $g15.$tPerturbation of Frames -- $g16.$tApproximation of the Inverse Frame Operator -- $g17.$tExpansions in Banach Spaces -- $gApp. A.1.$tNormed vector spaces and inner product spaces -- $gApp. A.2.$tLinear algebra -- $gApp. A.3.$tIntegration -- $gApp. A.4.$tSome special normed vector spaces -- $gApp. A.5.$tOperators on Banach spaces -- $gApp. A.6.$tOperators on Hilbert spaces -- $gApp. A.7.$tThe pseudo-inverse -- $gApp. A.8.$tSome special functions --
505 80 $gApp. A.9.$tB-splines.
520 1 $a"An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference."--BOOK JACKET.
650 0 $aFrames (Vector analysis)$0http://id.loc.gov/authorities/subjects/sh00000380
650 0 $aBases (Linear topological spaces)$0http://id.loc.gov/authorities/subjects/sh85012059
650 0 $aSignal processing$xMathematics.$0http://id.loc.gov/authorities/subjects/sh2008111659
830 0 $aApplied and numerical harmonic analysis.$0http://id.loc.gov/authorities/names/n96092412
852 00 $bmat$hQA433$i.C47 2003