Record ID | marc_columbia/Columbia-extract-20221130-007.mrc:96999590:1789 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-007.mrc:96999590:1789?format=raw |
LEADER: 01789mam a22003734a 4500
001 3078220
005 20221019213111.0
008 010213t20012001nyua b 001 0 eng
010 $a 2001020441
020 $a0387952594 (alk. paper)
035 $a(OCoLC)ocm46240277
035 $9ATQ2168CU
035 $a(NNC)3078220
035 $a3078220
040 $aDLC$cDLC$dC#P$dOHX$dOrLoB-B
042 $apcc
050 00 $aQA279.5$b.J47 2001
072 7 $aQA$2lcco
082 00 $a519.5/42$221
100 1 $aJensen, Finn V.$0http://id.loc.gov/authorities/names/n80022675
245 10 $aBayesian networks and decision graphs /$cFinn V. Jensen.
260 $aNew York :$bSpringer,$c[2001], ©2001.
300 $axv, 268 pages :$billustrations ;$c24 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aStatistics for engineering and information science
504 $aIncludes bibliographical references (p. [255]-262) and index.
505 00 $gI.$tA Practical Guide to Normative Systems.$g1.$tCausal and Bayesian Networks.$g2.$tBuilding Models.$g3.$tLearning, Adaptation, and Tuning.$g4.$tDecision Graphs --$gII.$tAlgorithms for Normative Systems.$g5.$tBelief Updating in Bayesian Networks.$g6.$tBayesian Network Analysis Tools.$g7.$tAlgorithms for Influence Diagrams.
650 0 $aBayesian statistical decision theory$xData processing.
650 0 $aMachine learning.$0http://id.loc.gov/authorities/subjects/sh85079324
650 0 $aNeural networks (Computer science)$0http://id.loc.gov/authorities/subjects/sh90001937
650 0 $aDecision making.$0http://id.loc.gov/authorities/subjects/sh85036199
830 0 $aStatistics for engineering and information science.$0http://id.loc.gov/authorities/names/n99012562
852 00 $bmat$hQA279.5$i.J47 2001