Record ID | marc_columbia/Columbia-extract-20221130-009.mrc:378218724:3743 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-009.mrc:378218724:3743?format=raw |
LEADER: 03743cam a22003374a 4500
001 4352943
005 20221102202157.0
008 031112t20042004nyua b 001 0 eng
010 $a 2003063815
020 $a0387201580 (alk. paper)
035 $a(OCoLC)ocm53477723
035 $a(NNC)4352943
035 $a4352943
040 $aDLC$cDLC$dYDX$dOrLoB-B
042 $apcc
050 00 $aQA614.86$b.M23 2004
082 00 $a514/.742$222
100 1 $aMandelbrot, Benoit B.$0http://id.loc.gov/authorities/names/n81107154
245 10 $aFractals and chaos :$bthe Mandelbrot set and beyond /$cBenoit Mandelbrot ; with a foreword by P.W. Jones ; and texts co-authored by C.J.G. Evertsz and M.C. Gutzwiller.
260 $aNew York :$bSpringer,$c[2004], ©2004.
300 $axii, 308 pages :$billustrations ;$c24 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aSelecta ;$vv. C
504 $aIncludes bibliographical references (p. [281]-298) and index.
505 00 $tForeword /$rPeter W. Jones -- $gI.$tQuadratic Julia and Mandelbrot Sets -- $tIntroduction to papers on quadratic dynamics: a progression from seeing to discovering -- $tAcknowledgments related to quadratic dynamics -- $tFractal aspects of the iteration of [approaches][lambda] z (1-z) for complex [lambda] and z (M1980n) -- $tCantor and Fatou dusts ; self-squared dragons (M 1982F) -- $tThe complex quadratic map and its M-set (M1983p) -- $tBifurcation points and the "n squared" approximation and conjecture (M1985g), illustrated by M. L. Frame and K. Mitchell -- $tThe "normalized radical" of the M-set (M1985g) -- $tThe boundary of the M-set is of dimension 2 (M1985g) -- $tCertain Julia sets include smooth components (M1985g) -- $tDomain-filling sequences of Julia sets, and intuitive rationale for the Siegel discs (M1985g) -- $tContinuous interpolation of the quadratic map and intrinsic tiling of the interiors of Julia sets (M1985n) -- $gII.$tNonquadratic Rational Dynamics -- $tIntroduction to chaos in nonquadratic dynamics: rational functions devised from doubling formulas -- $tThe map [approaches][lambda] (z + 1/ z) and roughening of chaos from linear to planar (computer-assisted homage to K. Hokusai) (M1984k) -- $tTwo nonquadratic rational maps, devised from Weierstrass doubling formulas (1979-2003) -- $gIII.$tIterated Nonlinear Function Systems and the Fractal Limit Sets of Kleinian Groups -- $tIntroduction to papers on Kleinian groups, their fractal limit sets, the IFS: history, recollections, and acknowledgments (2003) -- $tSelf-inverse fractals, Apollonian nets, and soap (M 1982F) -- $tSymmetry by dilation or reduction, fractals, roughness (M2002w) -- $tSelf-inverse fractals osculated by sigma-discs and limit sets of inversion ("Kleinian") groups (M1983m) -- $gIV.$tMultifractal Invariant Measures -- $tIntroduction to measures that vanish exponentially almost everywhere: DLA and Minkowski -- $tInvariant multifractal measures in chaotic Hamiltonian systems and related structures (Gutzwiller & M 1988) -- $tThe Minkowski measure and multifractal anomalies in invariant measures of parabolic dynamic systems (M1993s) -- $tHarmonic measure on DLA and extended self-similarity (M & Evertsz 1991) -- $gV.$tBackground and History -- $tThe inexhaustible function z squared plus c (1982-2003) -- $tThe Fatou and Julia stories -- $tMathematical analysis while in the wilderness (2003).
650 0 $aFractals.$0http://id.loc.gov/authorities/subjects/sh85051147
650 0 $aMandelbrot sets.$0http://id.loc.gov/authorities/subjects/sh99011714
650 0 $aDifferentiable dynamical systems.$0http://id.loc.gov/authorities/subjects/sh85037882
830 0 $aSelecta ;$vv. C.
852 00 $bmat$hQA614.86$i.M23 2004