It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-009.mrc:398213362:4599
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-009.mrc:398213362:4599?format=raw

LEADER: 04599cam a22003254a 4500
001 4389618
005 20221102205022.0
008 030612t20042004njua b 001 0 eng
010 $a 2003056324
020 $a069109294X (acid-free paper)
035 $a(OCoLC)ocm52455491
035 $a(NNC)4389618
035 $a4389618
040 $aDLC$cDLC$dC#P$dOrLoB-B
041 1 $aeng$hita
042 $apcc
050 00 $aQA26$b.O3513 2004
082 00 $a510/.9/04$221
100 1 $aOdifreddi, Piergiorgio,$d1950-$0http://id.loc.gov/authorities/names/n87852398
240 10 $aMatematica del Novecento.$lEnglish$0http://id.loc.gov/authorities/names/n2003011659
245 14 $aThe mathematical century :$bthe 30 greatest problems of the last 100 years /$cPiergiorgio Odifreddi ; translated by Arturo Sangalli ; with a foreword by Freeman Dyson.
260 $aPrinceton :$bPrinceton University Press,$c[2004], ©2004.
300 $axvi, 204 pages :$billustrations ;$c23 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references (p. [187]-188) and index.
505 00 $gCh. 1.$tThe Foundations -- $g1.1.$tThe 1920s: Sets -- $g1.2.$tThe 1940s: Structures -- $g1.3.$tThe 1960s: Categories -- $g1.4.$tThe 1980s: Functions -- $gCh. 2.$tPure Mathematics -- $g2.1.$tMathematical Analysis: Lebesgue Measure (1902) -- $g2.2.$tAlgebra: Steinitz Classification of Fields (1910) -- $g2.3.$tTopology: Brouwer's Fixed-Point Theorem (1910) -- $g2.4.$tNumber Theory: Gelfand Transcendental Numbers (1929) -- $g2.5.$tLogic: Godel's Incompleteness Theorem (1931) -- $g2.6.$tThe Calculus of Variations: Douglas's Minimal Surfaces (1931) -- $g2.7.$tMathematical Analysis: Schwartz's Theory of Distributions (1945) -- $g2.8.$tDifferential Topology: Milnor's Exotic Structures (1956) -- $g2.9.$tModel Theory: Robinson's Hyperreal Numbers (1961) -- $g2.10.$tSet Theory: Cohen's Independence Theorem (1963) -- $g2.11.$tSingularity Theory: Thom's Classification of Catastrophes (1964) -- $g2.12.$tAlgebra: Gorenstein's Classification of Finite Groups (1972) -- $g2.13.$tTopology: Thurston's Classification of 3-Dimensional Surfaces (1982) -- $g2.14.$tNumber Theory: Wiles's Proof of Fermat's Last Theorem (1995) -- $g2.15.$tDiscrete Geometry: Hales's Solution of Kepler's Problem (1998) -- $gCh. 3.$tApplied Mathematics -- $g3.1.$tCrystallography: Bieberbach's Symmetry Groups (1910) -- $g3.2.$tTensor Calculus: Einstein's General Theory of Relativity (1915) -- $g3.3.$tGame Theory: Von Neumann's Minimas Theorem (1928) -- $g3.4.$tFunctional Analysis: Von Neumann's Axiomatization of Quantum Mechanics (1932) -- $g3.5.$tProbability Theory: Kolmogorov's Axiomatization (1933) -- $g3.6.$tOptimization Theory: Dantzig's Simplex Method (1947) -- $g3.7.$tGeneral Equilibrium Theory: The Arrow-Debreu Existence Theorem (1954) -- $g3.8.$tThe Theory of Formal Languages: Chomsky's Classification (1957) -- $g3.9.$tDynamical Systems Theory: The KAM Theorem (1962) -- $g3.10.$tKnot Theory: Jones Invariants (1984) -- $gCh. 4.$tMathematics and the Computer -- $g4.1.$tThe Theory of Algorithms: Turing's Characterization (1936) -- $g4.2.$tArtificial Intelligence: Shannon's Analysis of the Game of Chess (1950) -- $g4.3.$tChaos Theory: Lorenz's Strange Attractor (1963) -- $g4.4.$tComputer-Assisted Proofs: The Four-Color Theorem of Appel and Haken (1976) -- $g4.5.$tFractals: The Mandelbrot Set (1980) -- $gCh. 5.$tOpen Problems -- $g5.1.$tArithmetic: The Perfect Numbers Problem (300 B.C.) -- $g5.2.$tComplex Analysis: The Riemann Hypothesis (1859) -- $g5.3.$tAlgebraic Topology: The Poincare Conjecture (1904) -- $g5.4.$tComplexity Theory: The P = NP Problem (1972).
520 1 $a"The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century, Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details." "This book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics."--BOOK JACKET.
650 0 $aMathematics$xHistory$y20th century.$0http://id.loc.gov/authorities/subjects/sh2010101014
852 00 $bmat$hQA26$i.O3513 2004