Record ID | marc_columbia/Columbia-extract-20221130-010.mrc:307222473:2466 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-010.mrc:307222473:2466?format=raw |
LEADER: 02466cam a2200337Ia 4500
001 4791519
005 20221103035813.0
008 040722t20042004njua b 001 0 eng d
020 $a981238720X
035 $a(OCoLC)ocm55990946
035 $a(NNC)4791519
035 $a4791519
040 $aJNA$cJNA$dOrLoB-B
090 $aQA311$b.H377 2004
100 1 $aHarris, Bruno.$0http://id.loc.gov/authorities/names/no2004098239
245 10 $aIterated integrals and cycles on algebraic manifolds /$cBruno Harris.
260 $aRiver Edge, NJ : World Scientific,$c[2004], ©2004.
300 $axii, 108 :$billustrations ;$c24 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aNankai tracts in mathematics ;$vv. 7
504 $aIncludes bibliographical references (p. 101-102) and index.
505 00 $g1.$tIterated integrals, Chen's flat connection and [pi][subscript 1] -- $g1.1.$tIntroduction -- $g1.2.$tDifferential equations -- $g1.3.$tProgram -- $g1.4.$tLie algebras -- $g1.5.$tChen's Lie algebra and connection -- $g1.6.$tSome work of Quillen -- $g1.7.$tGroup homology -- $g1.8.$tThe basic isomorphisms -- $g1.9.$tLattices in nilpotent Lie groups -- $g1.10.$tSome Hodge theory -- $g2.$tIterated integrals on compact Riemann surfaces -- $g2.1.$tIntroduction -- $g2.2.$tGeneralities on Riemann surfaces and iterated integrals -- $g2.3.$tHarmonic volumes and iterated integrals -- $g2.4.$tUse of the Jacobian -- $g2.5.$tVariational formula for harmonic volume -- $g2.6.$tAlgebraic equivalence and homological equivalence of algebraic cycles -- $g2.7.$tCalculations for the degree 4 Fermat curve -- $g2.8.$tCurrents and Hodge theory -- $g3.$tThe generalized linking pairing and the heat kernel -- $g3.1.$tIntroduction -- $g3.2.$tThe main theorem -- $gApp.$tOrientations, fiber integration.
650 0 $aIntegrals.$0http://id.loc.gov/authorities/subjects/sh85067099
650 0 $aAlgebraic cycles.$0http://id.loc.gov/authorities/subjects/sh85035063
650 0 $aAlgebraic number theory.$0http://id.loc.gov/authorities/subjects/sh85003436
650 0 $aManifolds (Mathematics)$0http://id.loc.gov/authorities/subjects/sh85080549
650 0 $aGeometry, Algebraic.$0http://id.loc.gov/authorities/subjects/sh85054140
600 10 $aChen, Guozai.$0http://id.loc.gov/authorities/names/n79104072
830 0 $aNankai tracts in mathematics ;$vv. 7.$0http://id.loc.gov/authorities/names/n2001000055
852 00 $bmat$hQA311$i.H377 2004g