It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-012.mrc:101676946:2776
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-012.mrc:101676946:2776?format=raw

LEADER: 02776cam a22004094a 4500
001 5609033
005 20221121193539.0
008 040810t20052005flu b 001 0 eng
010 $a 2004056152
020 $a0849331560 (acid-free paper)
035 $a(OCoLC)ocm56214596
035 $a(NNC)5609033
035 $a5609033
040 $aDLC$cDLC$dBAKER$dMUQ$dNLGGC$dOrLoB-B
042 $apcc
050 00 $aQA431$b.G776 2005
082 00 $a515/.625$222
084 $a31.46$2bcl
100 1 $aGrove, E. A.$q(Edward A.)$0http://id.loc.gov/authorities/names/n2004013971
245 10 $aPeriodicities in nonlinear difference equations /$cE.A. Grove, G. Ladas.
260 $aBoca Raton :$bChapman & Hall/CRC,$c[2005], ©2005.
300 $axiii, 379 pages ;$c25 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aAdvances in discrete mathematics and applications ;$vv. 4
504 $aIncludes bibliographical references (p. 369-377) and index.
505 00 $g1.$tPreliminaries -- $g2.$tEquations with periodic solutions -- $g3.$tEquations with eventually periodic solutions -- $g4.$tConvergence to periodic solutions -- $g5.$tThe equation [actual symbol not reproducible] -- $g6.$tMax equations with periodic solutions -- $g7.$tMax equations with periodic coefficients -- $g8.$tEquations in the spirit of the (3x+1) conjecture.
520 1 $a"Sharkovsky's Theorem, Li and Yorke's "period 3 implies chaos" result, and the (3x+1) conjecture are beautiful and deep results that demonstrate the rich periodic character of first-order, nonlinear difference equations. To date, however, we still know surprisingly little about higher-order nonlinear difference equations." "With the results and discussions it presents, Periodicities in Nonlinear Difference Equations places a few more stones in the foundation of the basic theory of nonlinear difference equations. Researchers and graduate students working in difference equations and discrete dynamic systems will find much to intrigue them and inspire further work in this area."--BOOK JACKET.
650 0 $aNonlinear difference equations.$0http://id.loc.gov/authorities/subjects/sh93001498
650 0 $aNonlinear difference equations$xNumerical solutions.$0http://id.loc.gov/authorities/subjects/sh93001499
650 0 $aCycles.$0http://id.loc.gov/authorities/subjects/sh85035062
650 6 $aÉquations aux différences non linéaires.
650 6 $aÉquations aux différences non linéaires$xSolutions numériques.
650 6 $aCycles.
700 1 $aLadas, G. E.$0http://id.loc.gov/authorities/names/n81023247
830 0 $aAdvances in discrete mathematics and applications ;$vv. 4.$0http://id.loc.gov/authorities/names/no99072716
852 00 $bmat$hQA431$i.G776 2005