Record ID | marc_columbia/Columbia-extract-20221130-012.mrc:191751366:2061 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-012.mrc:191751366:2061?format=raw |
LEADER: 02061cam a22003254a 4500
001 5860426
005 20221121210038.0
008 060417t20062006nju b 001 0 eng
010 $a 2006045702
020 $a9812565639 (alk. paper)
020 $a9812566864 (pbk.)
035 $a(OCoLC)ocm67405711
035 $a(NNC)5860426
035 $a5860426
040 $aDLC$cDLC$dYDX$dBAKER$dC#P$dOrLoB-B
042 $apcc
050 00 $aQA320$b.H36 2006
082 00 $a515/.733$222
100 1 $aHansen, Vagn Lundsgaard.$0http://id.loc.gov/authorities/names/n85272121
245 10 $aFunctional analysis :$bentering Hilbert space /$cVagn Lundsgaard Hansen.
260 $aNew Jersey :$bWorld Scientific,$c[2006], ©2006.
300 $ax, 136 pages ;$c24 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references (p. 129-130) and index.
505 00 $g1.$tBasic elements of metric topology -- $g2.$tNew types of function spaces -- $g3.$tTheory of Hilbert spaces -- $g4.$tOperators of Hilbert spaces -- $g5.$tSpectral theory.
520 1 $a"This book presents basic elements of the theory of Hilbert spaces and operators on Hilbert spaces, culminating in a proof of the spectral theorem for compact, self-adjoint operators on separable Hilbert spaces. It exhibits a construction of the space of p[superscript th] power Lebesgue integrable functions by a completion procedure with respect to a suitable norm in a space of continuous functions, including proofs of the basic inequalities of Holder and Minkowski. The L[superscript p]-spaces thereby emerges in direct analogy with a construction of the real numbers from the rational numbers. This allows grasping the main ideas more rapidly. Other important Banach spaces arising from function spaces and sequence spaces are also treated."--BOOK JACKET.
650 0 $aFunctional analysis.$0http://id.loc.gov/authorities/subjects/sh85052312
650 0 $aHilbert space.$0http://id.loc.gov/authorities/subjects/sh85060803
852 00 $bmat$hQA320$i.H36 2006