Record ID | marc_columbia/Columbia-extract-20221130-012.mrc:7866977:2968 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-012.mrc:7866977:2968?format=raw |
LEADER: 02968pam a2200301 a 4500
001 5511318
005 20221121180337.0
008 050411t20052005nju b 001 0 eng
010 $a 2005045536
020 $a981256361X (alk. paper)
035 $a(OCoLC)ocm59011531
035 $a(NNC)5511318
035 $a5511318
040 $aDLC$cDLC$dYDX$dBAKER$dOrLoB-B
050 00 $aQA274.73$b.R48 2005
082 00 $a519.2/82$222
100 1 $aRévész, Pál.$0http://id.loc.gov/authorities/names/n50045224
245 10 $aRandom walk in random and non-random environments /$cPál Révész.
250 $a2nd ed.
260 $aHackensack, NJ :$bWorld Scientific,$c[2005], ©2005.
300 $axvi, 380 pages ;$c24 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references (p. 357-373) and indexes.
505 00 $gI.$tSimple symmetric random walk in Z[superscript 1] -- $g1.$tIntroduction of part I -- $g2.$tDistributions -- $g3.$tRecurrence and the zero-one law -- $g4.$tFrom the strong law of large numbers to the law of iterated logarithm -- $g5.$tLevy classes -- $g6.$tWiener process and invariance principle -- $g7.$tIncrements -- $g8.$tStrassen type theorems -- $g9.$tDistribution of the local time -- $g10.$tLocal time and invariance principle -- $g11.$tStrong theorems of the local time -- $g12.$tExcursions -- $g13.$tFrequently and rarely visited sites -- $g14.$tAn embedding theorem -- $g15.$tA few further results -- $g16.$tSummary of part I -- $gII.$tSimple symmetric random walk in Z[superscript d] -- $g17.$tThe recurrence theorem -- $g18.$tWiener process and invariance principle -- $g19.$tThe law of iterated logarithm -- $g20.$tLocal time -- $g21.$tThe range -- $g22.$tHeavy points and heavy balls -- $g23.$tCrossing and self-crossing -- $g24.$tLarge covered balls -- $g25.$tLong excursions -- $g26.$tSpeed of escape -- $g27.$tA few further problems -- $gIII.$tRandom walk in random environment -- $g28.$tIntroduction -- $g29.$tIn the first six days -- $g30.$tAfter the sixth day -- $g31.$tWhat can a physicist say about the local time [xi](0,n)? -- $g32.$tOn the favourite value of the RWIRE -- $g33.$tA few further problems.
520 1 $a"The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results - mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk."--BOOK JACKET.
650 0 $aRandom walks (Mathematics)$0http://id.loc.gov/authorities/subjects/sh85111357
852 00 $bmat$hQA274.73$i.R48 2005