Record ID | marc_columbia/Columbia-extract-20221130-014.mrc:115844713:2728 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-014.mrc:115844713:2728?format=raw |
LEADER: 02728cam a22003734a 4500
001 6901265
005 20221130185949.0
008 080716t20092009flua b 001 0 eng
010 $a 2008031545
020 $a9781584887935 (alk. paper)
020 $a1584887931 (alk. paper)
035 $a(OCoLC)ocn150375706
035 $a(OCoLC)150375706
035 $a(NNC)6901265
035 $a6901265
040 $aDLC$cDLC$dBTCTA$dBAKER$dYDXCP$dC#P$dBWX$dOrLoB-B
050 00 $aQA248$b.G36 2009
050 4 $aQA3$b.P8 Vol. 293
082 00 $a511.3/22$222
100 1 $aGao, Su,$d1968-$0http://id.loc.gov/authorities/names/n2002159677
245 10 $aInvariant descriptive set theory /$cSu Gao.
260 $aBoca Raton :$bCRC Press,$c[2009], ©2009.
300 $axiv, 383 pages :$billustrations ;$c25 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aPure and applied mathematics ;$v293
500 $a"A Chapman & Hall book."
504 $aIncludes bibliographical references (p. 361-372) and index.
505 00 $gI.$tPolish Group Actions -- $g1.$tPreliminaries -- $g2.$tPolish Groups -- $g3.$tPolish Group Actions -- $g4.$tFiner Polish Topologies -- $gII.$tTheory of Equivalence Relations -- $g5.$tBorel Reducibility -- $g6.$tThe Glimm-Effros Dichotomy -- $g7.$tCountable Borel Equivalence Relations -- $g8.$tBorel Equivalence Relations -- $g9.$tAnalytic Equivalence Relations -- $g10.$tTurbulent Actions of Polish Groups -- $gIII.$tCountable Model Theory -- $g11.$tPolish Topologies of Infinitary Logic -- $g12.$tThe Scott Analysis -- $g13.$tNatural Classes of Countable Models -- $gIV.$tApplications to Classification Problems -- $g14.$tClassification by Example: Polish Metric Spaces -- $g15.$tSummary of Benchmark Equivalence Relations -- $gA.$tProofs about the Gandy-Harrington Topology.
520 1 $a"Exploring an active area of mathematics that studies the complexity of equivalence relations and classification problems, Invariant Descriptive Set Theory presents an introduction to the basic concepts, methods, and results of this theory. It brings together techniques from various areas of mathematics, such as algebra, topology, and logic, which have diverse applications to other fields." "By illustrating the relevance of invariant descriptive set theory to other fields of mathematics, this self-contained book encourages readers to further explore this very active area of research."--BOOK JACKET.
650 0 $aDescriptive set theory.$0http://id.loc.gov/authorities/subjects/sh85037130
650 0 $aInvariant sets.$0http://id.loc.gov/authorities/subjects/sh99011720
830 0 $aPure and applied mathematics (Academic Press) ;$v293.
852 00 $bmat$hQA248$i.G36 2009g