Record ID | marc_columbia/Columbia-extract-20221130-016.mrc:133938161:11256 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-016.mrc:133938161:11256?format=raw |
LEADER: 11256cam a2200361 a 4500
001 7838230
005 20221201040950.0
008 091028t20102010flua b 001 0 eng
010 $a 2009042040
020 $a9781420090192 (hardcover : alk. paper)
020 $a1420090194 (hardcover : alk. paper)
024 $a40018028528
035 $a(OCoLC)461630820
035 $a(OCoLC)ocn461630820
035 $a(NNC)7838230
035 $a7838230
040 $aDLC$cDLC$dC#P$dYDXCP$dOrLoB-B
050 00 $aTA418.9.C6$bS457 2010
082 00 $a620.1/920429$222
245 00 $aShape-memory polymers and multifunctional composites /$cedited by Jinsong Leng, Shanyi Du.
260 $aBoca Raton :$bCRC Press/Taylor & Francis,$c[2010], ©2010.
300 $ax, 373 pages :$billustrations ;$c25 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references and index.
505 00 $g1.$tOverview of Shape-Memory Polymers /$rAndreas Lendlein -- $g1.1.$tIntroduction -- $g1.2.$tDefinition of Actively Moving Polymers -- $g1.3.$tShape-Memory Polymer Architectures -- $g1.3.1.$tThermally Induced Dual-Shape Effect -- $g1.3.1.1.$tThermoplastic Shape-Memory Polymers -- $g1.3.1.2.$tCovalently Cross-Linked Shape-Memory Polymers -- $g1.3.2.$tIndirect Triggering of Thermally Induced Dual-Shape Effect -- $g1.4.$tLight-Induced Dual-Shape Effect -- $g1.5.$tTriple-Shape Polymers -- $g1.6.$tOutlook -- $tReferences -- $g2.$tThe Structural Variety of Shape-Memory Polymers /$rAnnette M. Schmidt -- $g2.1.$tStructural Requirements for SMP -- $g2.2.$tSMPs with a Covalently Cross-Linked Primary Structure -- $g2.2.1.$tSMP Networks Based on Polyolefines -- $g2.2.2.$tSMP Networks Based on Polyurethanes -- $g2.2.3.$tSMP Networks Based on Poly((Meth)Acrylates) -- $g2.2.4.$tSMP Networks Based on Polystyrene -- $g2.2.5.$tSMP Networks Based on Polysiloxanes -- $g2.3.$tThermoplastic Shape-Memory Polymers -- $g2.3.1.$tShape-Memory Polyurethanes -- $g2.3.1.1.$tPrinciple of Formation -- $g2.3.1.2.$tRaw Materials -- $g2.3.1.3.$tSynthesis Procedures -- $g2.3.1.4.$tStructure-Property Relationships in PU-SMPs -- $g2.3.1.5.$tCurrent State of Development -- $g2.3.2.$tThermoplastic SMPs Based on Poly(Ethylene Oxide-Ethylene Terephthalate) Copolymers -- $g2.3.3.$tThermoplastic SMPs Based on Aliphatic Polyesters -- $g2.3.4.$tThermoplastic SMPs Based on Polystyrene -- $g2.3.5.$tPoly(Norbornyl)-Based SMPs -- $g2.3.6.$tThermoplastic SMPs Based on Polymer Blends -- $g2.3.6.1.$tPolyethylene-Nylon-6 Blend -- $g2.3.6.2.$tPolyvinyl Acetate)-Based Polymer Blends -- $g2.3.6.3.$tPolyvinyl Chloride)/Thermoplastic Polyurethane Blends -- $g2.3.7.$tSummary -- $g2.4.$tRemarks and Outlook -- $tReferences -- $g3.$tThermomechanical Behavior and Modeling Approaches /$rMartin L. Dunn -- $g3.1.$tIntroduction -- $g3.1.1.$tBrief History-Current Status -- $g3.1.2.$tMacroscopic Response of SMPs---Thermomechanical -- $g3.1.3.$tMacroscopic Response of SMPs---Environmental -- $g3.1.4.$tDescription of Mechanisms for Modeling -- $g3.2.$tModeling of Thermomechanical Behavior of SMPs -- $g3.2.1.$tBackdrop for Modeling -- $g3.2.2.$tModels Based on Storage Deformation -- $g3.2.3.$tModels Based on Phase Transition -- $g3.2.4.$tModels Based on Viscoelasticity -- $g3.3.$tConclusions -- $tReferences -- $g4.$tThermomechanical Characterizations of Shape-Memory Polymers (Dual/Triple-Shape) and Modeling Approaches /$rAndreas Lendlein -- $g4.1.$tIntroduction to the Thermally Induced Shape-Memory Effect of Polymers -- $g4.2.$tInvestigation of the Dual-Shape Effect of Shape-Memory Polymers with Cyclic, Thermomechanical Tensile Tests -- $g4.3.$tInvestigation of the Triple-Shape Effect of Shape-Memory Polymers with Cyclic, Thermomechanical Tensile Tests -- $g4.4.$tThermomechanical Model Approaches for Simulation of the Shape-Memory Behavior of Polymers -- $g4.5.$tSummary and Outlook -- $tReferences -- $g5.$tElectrical, Thermomechanical, and Shape-Memory Properties of the PU Shape-Memory Polymer Filled with Carbon Black /$rBin Yang -- $g5.1.$tIntroduction -- $g5.2.$tExperiment -- $g5.2.1.$tSample Preparation -- $g5.2.2.$tTesting -- $g5.3.$tResults and Discussion -- $g5.3.1.$tElectrical Properties -- $g5.3.2.$tUniaxial Tension at Room Temperature -- $g5.3.3.$tShape Fixity -- $g5.3.4.$tHeating-Induced Recoverable Strain -- $g5.3.5.$tHeating-Induced Recovery Stress -- $g5.3.6.$tWater-Actuated Shape Recovery -- $g5.3.7.$tDamping Capability -- $g5.3.8.$tYoung's Modulus -- $g5.4.$tConclusions -- $tReferences -- $g6.$tMultifunctional Shape-Memory Polymers and Actuation Methods /$rShanyi Du -- $g6.1.$tIntroduction -- $g6.2.$tThermal-Induced Shape-Memory Effect -- $g6.3.$tLight-Induced Shape-Memory Effect -- $g6.3.1.$tShape-Memory Polymer in Response to Light -- $g6.3.2.$tInfrared Light-Induced Shape-Memory Effect -- $g6.3.3.$tInfrared Light-Induced Shape-Memory Polymer Embedded with an Optical Fiber -- $g6.4.$tElectrically Induced Shape-Memory Effect -- $g6.4.1.$tShape-Memory Polymer Filled with Carbon Nanotubes -- $g6.4.2.$tShape-Memory Polymer Filled with Carbon Particles -- $g6.4.2.1.$tDifferential Thermal Scanning Behavior -- $g6.4.2.2.$tDynamic Mechanical Performances -- $g6.4.2.3.$tMicro/Nanopatterns of SMP Composite -- $g6.4.2.4.$tElectroactive Properties for Shape-Memory Effect -- $g6.4.3.$tShape-Memory Polymer Filled with Electromagnetic Fillers -- $g6.4.3.1.$tElectromagnetic-Induced SMP Composite -- $g6.4.3.2.$tElectroactive Thermoplastic SMP Composite Filled with Ni Powder Chains -- $g6.4.3.3.$tElectroactive Thermoplastic SMP/CB Composite Filled with Ni Powder Chains -- $g6.4.3.4.$tElectroactive Thermoset SMP Composite Filled with Ni Powder Chains -- $g6.4.3.5.$tSMP Composite Actuated by External Magnetic Force -- $g6.4.4.$tShape-Memory Polymer Filled with Hybrid Fibers -- $g6.5.$tSolution-Driven Shape-Memory Effect -- $g6.5.1.$tWater-Driven Shape-Memory Effect -- $g6.5.1.1.$tGlass Transition Temperature after Immersion -- $g6.5.1.2.$tCorrelation among Main Factors -- $g6.5.2.$tSolution-Driven Shape-Memory Effect by Chemical Interaction -- $g6.5.3.$tSolution-Driven Shape-Memory Effect by Physical Swelling Effect -- $g6.5.3.1.$tTheoretical Basis and Analysis -- $g6.5.3.2.$tExperimental Tests and Demonstration -- $g6.6.$tSummary and Outlook -- $tReferences -- $g7.$tShape-Memory Polymer Composites /$rShanyi Du -- $g7.1.$tIntroduction -- $g7.2.$tConstitutive Relationship of Shape-Memory Polymers -- $g7.3.$tShape-Memory Polymer Composites -- $g7.3.1.$tShape-Memory Polymer Filled with Carbon Nanotubes -- $g7.3.1.1.$tStatic Tensile Property -- $g7.3.1.2.$tShape Recovery Force Measurement -- $g7.3.2.$tShape-Memory Polymer Filled with Carbon Nanofibers -- $g7.3.3.$tShape-Memory Polymer Filled with SiC Nanoparticles -- $g7.3.3.1.$tThermal Transition and Stress-Strain Behavior -- $g7.3.3.2.$tRecoverable Mechanical Property -- $g7.3.4.$tShape-Memory Polymer Reinforced by Continuous Fibers -- $g7.3.4.1.$tDynamic Mechanical Analysis -- $g7.3.4.2.$tShape Recovery Performance -- $g7.3.4.3.$tDeformation Mechanism of Microstructure -- $g7.4.$tSummary and Outlook -- $tReferences -- $g8.$tApplications of Shape-Memory Polymers in Aerospace /$rJinsong Leng -- $g8.1.$tIntroduction -- $g8.2.$tShape-Memory Polymer Composite Hinge -- $g8.2.1.$tFinite Element Method Modeling and Analysis -- $g8.2.2.$tDesign and Deployment Demonstration -- $g8.2.3.$tApplication in Solar Arrays -- $g8.3.$tShape-Memory Polymer Composite Boom -- $g8.4.$tShape-Memory Polymer Composite for Deployable Optical Systems -- $g8.5.$tShape-Memory Polymer Composite for Ground-Based Deployable Mirrors -- $g8.6.$tShape-Memory Polymer Composite Reflector -- $g8.6.1.$tStiffeners for a Flexible Reflector -- $g8.6.2.$tTruss Structure -- $g8.6.3.$tParabolic Dish Antenna Reflector -- $g8.6.4.$tSingly Curved Reflector -- $g8.7.$tShape-Memory Polymer for Morphing Structures -- $g8.7.1.$tFolding Wing -- $g8.7.2.$tVariable Camber Wing -- $g8.7.3.$tDeployable Morphing Wing -- $g8.8.$tReusable Shape-Memory Polymer Mandrel -- $g8.9.$tSummary and Outlook -- $tReferences -- $g9.$tShape-Memory Polymer Foam and Applications /$rWitold M. Sokolowski -- $g9.1.$tIntroduction -- $g9.2.$tOverview of CHEM Foam Deployable Structure -- $g9.2.1.$tDescription -- $g9.2.2.$tProperties of Baseline SMP Foam Material -- $g9.2.2.1.$tMechanical Properties -- $g9.2.2.2.$tStress-Strain-Temperature Cycles -- $g9.2.2.3.$tThermal Properties -- $g9.2.3.$tCharacteristics of CHEM Foam Structure -- $g9.3.$tCHEM Structure Space Applications -- $g9.3.1.$tInvestigated Space Applications -- $g9.3.1.1.$tAdvanced Self-Deployable Wheels for Mobility Systems -- $g9.3.1.2.$tCHEM Horn Antenna -- $g9.3.1.3.$tPrecision Soft Lander -- $g9.3.1.4.$tRadar Antenna -- $g9.3.1.5.$tSensor Delivery System -- $g9.3.2.$tCHEM Improvements for Large Structures -- $g9.3.3.$tPotential Advanced CHEM Structures -- $g9.3.4.$tComparison with Other Deployable Structures -- $g9.4.$tPotential Commercial Applications of CHEM Structures -- $g9.5.$tMedical Applications of CHEM Structures -- $tReferences --
505 80 $g10.$tShape-Memory Polymer Textile /$rJinlian Hu -- $g10.1.$tIntroduction -- $g10.1.1.$tDifferent Shape-Memory Polymers -- $g10.1.1.1.$tEarly Developed SMPs -- $g10.1.1.2.$tShape-Memory Polyurethanes (SMPUs) -- $g10.1.1.3.$tOthers -- $g10.1.2.$tCharacteristics of SMPs -- $g10.1.2.1.$tStructure of SMPs -- $g10.1.2.2.$tShape-Memory Behavior of SMPs with Thermosensitivity -- $g10.1.2.3.$tOther Properties of SMPs -- $g10.2.$tOverview of SMPs Used for Textiles -- $g10.3.$tImportance of Textile -- $g10.4.$tMain Physical Properties/Benefits of Textiles -- $g10.4.1.$tProperties of Shape-Memory Fibers -- $g10.4.1.1.$tMechanical Properties -- $g10.4.1.2.$tThermomechanical Properties -- $g10.4.1.3.$tShape-Memory Properties -- $g10.4.2.$tShape-Memory Yarns and Fabrics -- $g10.4.3.$tShape-Memory Finishing Textiles -- $g10.5.$tApplications and Examples -- $g10.5.1.$tShape-Memory Yarns -- $g10.5.2.$tShape-Memory Fabrics -- $g10.5.3.$tShape-Memory Garments -- $g10.5.4.$tShape-Memory Finishing Fabric and Garments -- $tReferences -- $g11.$tApplications of Shape-Memory Polymers in Biomedicine /$rJinsong Leng -- $g11.1.$tIntroduction -- $g11.2.$tCharacteristics of Shape-Memory Polymers -- $g11.3.$tBiomedical Applications of Shape-Memory Polymers -- $g11.4.$tCHEM Foam Structures and Medical Applications -- $g11.5.$tSummary and Outlook -- $tReferences -- $g12.$tNovel Applications and Future of Shape-Memory Polymers /$rWei Min Huang -- $g12.1.$tIntroduction -- $g12.2.$tConcerns in Materials Selection and Design -- $g12.3.$tApplications -- $g12.3.1.$tPU SMP and Composites -- $g12.3.2.$tPS SMP -- $g12.4.$tFuture Directions in Developing New SMPs and Applications -- $g12.5.$tConclusions -- $tAcknowledgments -- $tReferences.
650 0 $aComposite materials.$0http://id.loc.gov/authorities/subjects/sh85029397
650 0 $aPolymers$xThermomechanical properties.
650 0 $aShape memory effect.$0http://id.loc.gov/authorities/subjects/sh87003249
700 1 $aLeng, Jinsong.$0http://id.loc.gov/authorities/names/n2009069141
700 1 $aDu, Shanyi.$0http://id.loc.gov/authorities/names/n2009069142
852 00 $boff,eng$hTA418.9.C6$iS457 2010