Record ID | marc_columbia/Columbia-extract-20221130-016.mrc:152534450:17928 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-016.mrc:152534450:17928?format=raw |
LEADER: 17928cam a2200553 a 4500
001 7905682
005 20221201043641.0
008 100405t20102010flua b 001 0 eng
010 $a 2010014607
015 $aGBA979550$2bnb
016 7 $a101527974$2DNLM
016 7 $a015347334$2Uk
019 $a311755813
020 $a9781439813621 (hardcover : alk. paper)
020 $a1439813620 (hardcover : alk. paper)
029 1 $aNLM$b101527974
029 1 $aAU@$b000045508299
029 1 $aCDX$b9601924
035 $a(OCoLC)ocn605754113
035 $a(OCoLC)605754113$z(OCoLC)311755813
035 $a(NNC)7905682
035 $a7905682
040 $aDNLM/DLC$cDLC$dBTCTA$dNLM$dC#P$dUKM$dBWX$dCDX$dYDXCP$dOrLoB-B
042 $apcc
050 00 $aRM666.P415$bO98 2010
060 10 $aQU 68$bO97b 2010
082 00 $a572/.65$222
100 1 $aOwusu-Apenten, R. K.$0http://id.loc.gov/authorities/names/n2002011752
245 10 $aBioactive peptides :$bapplications for improving nutrition and health /$cRichard Owusu-Apenten.
260 $aBoca Raton :$bCRC Press,$c[2010], ©2010.
300 $axix, 394 pages :$billustrations ;$c25 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references and index.
505 00 $gChapter 1.$tNutrition and the Host Response to Infection and Injury -- $g1.1.$tNutrition and Illness -- $g1.1.1.$tIntroduction -- $g1.1.2.$tInfection and Undernutrition -- $g1.1.3.$tNutritional Status and Immune Function -- $g1.1.4.$tThe Undernutrition-Infection Paradigm -- $g1.2.$tHost Response to Injury -- $g1.2.1.$tThe Ebb and Flow Phases -- $g1.2.2.$tMolecular Aspects of the Host Response to Injury -- $g1.2.3.$tThe Infection-Inflammatory Response -- $g1.2.4.$tNeuroendocrine Responses to Illness and Stress -- $g1.3.$tUnintended Weight Loss -- $g1.3.1.$tSickness-Related Weight Loss -- $g1.3.2.$tIllness Anorexia -- $g1.3.3.$tCachexia -- $g1.3.4.$tStarvation Weight Loss versus Cachexia -- $g1.3.5.$tFat-Free Mass and Body Composition during Illness -- $g1.3.6.$tWeight Loss and Mortality Risk -- $g1.3.7.$tPremature or Preterm Infants -- $g1.4.$tMultimodal Nutritional Support Using Bioactive Peptides -- $g1.4.1.$tNutritional Support -- $g1.4.2.$tAnti-Inflammatory Therapy and Wasting -- $g1.4.3.$tInfection and Antisepsis -- $g1.4.4.$tAnabolic Dysfunction -- $g1.4.5.$tAnorexia and Food Intake -- $g1.4.6.$tAntioxidant Capacity -- $g1.5.$tSummary and Conclusions -- $tReferences -- $gChapter 2.$tBioactive Peptides for Nutrition and Health -- $g2.1.$tLegislation -- $g2.1.1.$tIntroduction -- $g2.1.2.$tDietary Supplements -- $g2.1.3.$tFoods for Special Medical Purposes -- $g2.1.4.$tMedical Foods -- $g2.1.5.$tEU Legislation for Dietetic Foods -- $g2.1.6.$tFunctional Foods -- $g2.1.7.$tProtein and Peptide Medical Foods -- $g2.2.$tBioactive Peptides and Proteins -- $g2.2.1.$tBioactive Compounds -- $g2.2.2.$tBioactive Peptide-Related Nutritional Phenomena -- $g2.2.2.1.$tBioactive Peptides in Body Compartments -- $g2.2.2.2.$tExogenous Bioactive Peptides Associated with Foods -- $g2.2.3.$tGene-Encoded Bioactive Peptides -- $g2.2.4.$tBioactive Peptides and the Cryptome -- $g2.2.5.$tCommercial Bioactive Peptides -- $g2.2.6.$tNutrigenomics Considerations -- $g2.3.$tApplications of Protein Supplements for Health -- $g2.3.1.$tHeterogeneous versus Enriched Supplements -- $g2.3.2.$tBone and Hip Fractures -- $g2.3.3.$tElderly Malnourished Patients -- $g2.3.4.$tPregnancy -- $g2.3.5.$tMuscle Strength from Resistance Exercise -- $g2.3.6.$tInsulin-Stimulating Activity -- $g2.3.7.$tProtein Supplementation and Cardiovascular Health -- $g2.4.$tPerspectives on Human Trial Data -- $g2.4.1.$tStatistical Effects -- $g2.4.2.$tHealth Claims for Foods and Supplements -- $g2.4.3.$tSafety and Side Effects of Bioactive Peptides and Proteins -- $g2.5.$tSummary and Conclusions -- $tAppendices -- $tReferences -- $gChapter 3.$tDietary Protein Requirements for Health -- $g3.1.$tIntroduction -- $g3.1.1.$tProtein-Energy Undernutrition -- $g3.1.2.$tDetection of Protein-Energy Undernutrition -- $g3.1.3.$tIncidence and Consequences of Undernutrition -- $g3.2.$tDietary Protein Quality Relation to Health -- $g3.2.1.$tProtein Quality and Nutritive Properties -- $g3.2.2.$tGrowth Assays for Dietary Protein Quality -- $g3.2.3.$tNitrogen Balance and Protein Quality -- $g3.2.4.$tDietary Protein Digestibility Relation to Nitrogen Balance -- $g3.2.5.$tHeal Digestibility and Net Postprandial Protein Utilization -- $g3.2.6.$tDietary and Body Protein Balancesand Transformations -- $g3.3.$tProtein Requirements and Health -- $g3.3.1.$tAdults -- $g3.3.2.$tProtein Requirements for Aging Adults (Elderly) -- $g3.3.3.$tProtein Requirements for Exercise -- $g3.3.4.$tPreterm Infants and Children -- $g3.4.$tDietary Protein and Host Responses to Illness -- $g3.4.1.$tUrea-Nitrogen Losses during Illness -- $g3.4.2.$tAcute Phase Protein Synthesis -- $g3.4.3.$tProtein EAA Imbalances during Illness -- $g3.5.$tPeptides and Protein Bioactivity -- $g3.5.1.$tEssential Amino Acid and Dietary Protein Meta-Nutrients -- $g3.5.2.$tLeucine and the Branched Chain Amino Acids -- $g3.5.3.$tNutrient Signaling and Gene Interactions -- $g3.5.4.$tReceptor Activation by Bioactive Peptides -- $g3.5.5.$tAmino Acid Deprivation and Growth Retardation -- $g3.5.6.$tIncreased EAA Availability and Gene Expression -- $g3.5.7.$tMicroarray Profiling of Dietary Protein-Gene Interactions -- $g3.6.$tTypes of Dietary Protein Health Effects -- $g3.6.1.$tTypes of Health Benefits -- $g3.6.2.$tHealth Benefits and Non-Absorbed Proteins -- $g3.7.$tSummary and Conclusion -- $tAppendices -- $tReferences -- $gChapter 4.$tProtein Turnover and Economics within the Body -- $g4.1.$tProtein Turnover and Wasting -- $g4.1.1.$tIntroduction -- $g4.1.2.$tBiological Purpose of Protein Turnover -- $g4.1.3.$tStable Isotope End Product and Precursor Flux -- $g4.1.4.$tNon-Tracer Methods for Estimation of Turnover -- $g4.1.5.$tProtein Turnover Implications for Nutritional Support -- $g4.2.$tBaseline Whole Body Protein Turnover -- $g4.2.1.$tAdults -- $g4.2.2.$tGender and Pregnancy -- $g4.3.$tRegional Protein Turnover -- $g4.3.1.$tSplanchnic Bed Protein Kinetics -- $g4.3.2.$tFirst-Pass Metabolism of Dietary EAA and Interorgan Effects -- $g4.4.$tProtein Turnover during Illness -- $g4.4.1.$tPreterm Babies and Children -- $g4.4.2.$tAging Adults and Sarcopenia -- $g4.4.3.$tHIV/AIDS Infection -- $g4.4.4.$tBurns Patients -- $g4.4.5.$tCancer Cachexia -- $g4.4.6.$tChronic Renal Failure and Hemodialysis -- $g4.4.7.$tDiabetes -- $g4.4.8.$tSepsis -- $g4.4.9.$tTuberculosis -- $g4.4.10.$tAnabolic Dysfunction Affecting Protein Turnover -- $g4.5.$tNutrients and Protein Turnover -- $g4.5.1.$tDietary Protein Intake and Whole Body Protein Turnover -- $g4.5.2.$tSkeletal Muscle Protein Turnover -- $g4.5.2.1.$tAnimal Studies -- $g4.5.2.2.$tEffect of Nutrients on Skeletal Muscle Protein Turnover---Human Studies -- $g4.6.$tSlow and Fast Proteins -- $g4.6.1.$tDigestion and Absorption Kinetics -- $g4.6.2.$tEffect of Fast Dietary Proteins on Protein Turnover -- $g4.6.3.$tIntrinsic versus Extrinsic Contributions to Fast and Slow Proteins -- $g4.6.4.$tFast versus Slow Proteins for the Elderly and Young -- $g4.6.5.$tInsulinotropic Action of Fast Proteins -- $g4.7.$tSummary and Conclusions -- $tReferences -- $gChapter 5.$tMajor Processes for Muscle Gain and Loss -- $g5.1.$tIntroduction -- $g5.1.1.$tMuscle Cells -- $g5.1.2.$tMuscle Stem Cell Proliferation -- $g5.1.3.$tMuscle Stem Cell Differentiation -- $g5.1.4.$tNutrient Effects on Muscle Stem Cell Growth -- $g5.2.$tMyostatin -- $g5.2.1.$tDouble Muscling and Myostatin Mutations -- $g5.2.2.$tMyostatin Structure and Activity -- $g5.2.3.$tMode of Action of Myostatin -- $g5.2.4.$tMyostatin Role in Wasting Diseases -- $g5.2.5.$tMyostatin Inhibition as Therapy for Muscle Wasting -- $g5.3.$tMuscle Cell Death and Atrophy -- $g5.3.1.$tTypes of Cell Death -- $g5.3.2.$tMuscle Apoptosis and Necrosis -- $g5.3.3.$tSkeletal Muscle Wasting via Apoptosis -- $g5.3.4.$tLysosome-Mediated Autophagy -- $g5.4.$tProteolysis via Ubiquitin Proteasome -- $g5.4.1.$tEnzyme Systems for Muscle Wasting -- $g5.4.2.$tStructure of the Ubiquitin-Proteasome -- $g5.4.3.$tUbiquitin Proteasome and Muscle Wasting -- $g5.4.4.$tCell Cycle Regulation and the Proteasome -- $g5.4.5.$tUPS and the Immune Response -- $g5.5.$tFurther Signaling Pathways for Muscle Atrophy -- $g5.5.1.$tSkeletal Muscle Differentiation Program -- $g5.5.2.$tNuclear Factor Kappa Beta and Muscle Wasting -- $g5.5.3.$tMuRF and Atrogin-1 Gene Expression -- $g5.5.4.$tAKT/Foxo/Atrogin-1 Pathway and Proteolysis -- $g5.5.5.$tOxidative Stress and Muscle Wasting -- $g5.5.6.$tAngiotensin-Related Muscle Wasting -- $g5.6.$tMammalian Target of Rapamycin and Hypertrophy -- $g5.6.1.$tmTOR Function as a Nutrient Sensor -- $g5.6.2.$tTwo mTOR Complexes and Their Function -- $g5.6.3.$tRegulation of Protein Synthesis by mTOR -- $g5.7.$tSummary and Conclusions -- $tAppendices -- $tReferences -- $gChapter 6.$tInflammation and Innate Immune Response -- $g6.1.$tTypes of Inflammation -- $g6.1.1.$tIntroduction -- $g6.1.2.$tAcute and Chronic Inflammation -- $g6.1.3.$tInfection Inflammation -- $g6.1.4.$tObesity-Related Inflammation -- $g6.1.5.$tChronic Inflammation, Illness, and Lifestyle Factors -- $g6.2.$tProinflammatory Signaling -- $g6.2.1.$tProinflammatory Cytokines -- $g6.2.2.$tTranscription Factors for Inflammatory Signaling --
505 80 $g6.2.3.$tRedox-Sensitive Inflammatory Transcription Factors -- $g6.2.4.$tMAP Kinases, Phosphatases, and Inflammation -- $g6.2.5.$tRenin-Angiotensin System and Inflammation -- $g6.3.$tAnti-Inflammatory Bioactive Peptides and Supplements -- $g6.3.1.$tAdiponectin -- $g6.3.2.$tAngiotensin-Converting Enzyme Inhibitor Peptides -- $g6.3.3.$tAntimicrobial Peptide Endotoxin Antagonists -- $g6.3.4.$tCytokine Antibodies -- $g6.3.5.$tGhrelin and Growth Hormone Secretagogues -- $g6.3.6.$tGlucocorticoid-Inducible Peptides -- $g6.3.6.1.$tLipocortin or Annexin-1 -- $g6.3.6.2.$tUteroglobin or Clara Cell 10 Protein -- $g6.3.6.3.$tAntiflammins -- $g6.3.7.$tMap Kinase Inhibitors -- $g6.3.8.$tMelanocortin Peptides and KPV -- $g6.3.9.$tGlutamine and Glutamine Dipeptide -- $g6.3.10.$tFood Proteins and Supplements -- $g6.4.$tIn Vivo Applications and Controlled Trials -- $g6.4.1.$tProof for Anti-Inflammatory Action -- $g6.4.2.$tInflammatory Bowel Disease, Colitis, and Mucosal Injury -- $g6.4.3.$tSystemic Inflammatory Response and Sepsis -- $g6.4.4.$tRespiratory Distress Syndrome, Lung Injury and Related -- $g6.4.5.$tRheumatoid Arthritis -- $g6.5.$tSummary and Conclusions -- $tReferences -- $gChapter 7.$tInfection and Sepsis -- $g7.1.$tIntroduction -- $g7.1.1.$tBacterial Infections, Sepsis, and Weight Loss -- $g7.1.2.$tHost Antimicrobial Peptides for Innate Defense -- $g7.1.3.$tAntibiotics and Muscle Mass -- $g7.2.$tPathogen Recognition and Intracellular Signaling -- $g7.2.1.$tToll-Like Receptors -- $g7.2.1.1.$tTLR in Peripheral Tissues and Muscles -- $g7.2.1.2.$tLipopolysaccharide Signaling via TLR4 -- $g7.2.1.3.$tPeptidoglycan Signaling via TLR2 -- $g7.2.1.4.$tPhagocytosis and TLR Function -- $g7.2.2.$tNOD Intracellular Receptors for Pathogens -- $g7.2.3.$tToll Polymorphism and the Hygiene Hypothesis -- $g7.3.$tHost Antimicrobial Peptides -- $g7.3.1.$tGeneral Properties -- $g7.3.2.$tDefensins and Cathelicidins -- $g7.3.2.1.$tDefensins -- $g7.3.2.2.$tCathelicidinor hCAP18 -- $g7.3.3.$tDermaseptins and Frog Peptides -- $g7.3.4.$tBactericidal/Permeability-Increasing Protein -- $g7.3.5.$tLactoferrin, Lactoferricin, and Talactoferrin -- $g7.4.$tFunctions of Antimicrobial Peptides -- $g7.4.1.$tAntibacterial Activity -- $g7.4.2.$tAnticancer Activity of AMPs -- $g7.5.$tIn Vivo Applications and Human-Trials of AMPs -- $g7.5.1.$tGeneral Considerations -- $g7.5.2.$tBurns Injury, Wound Healing -- $g7.5.3.$tCancer Therapy -- $g7.5.4.$tInfant Diarrhea -- $g7.5.5.$tHelicobacterpylori-Related Ulcers -- $g7.5.6.$tHepatitis C Treatment -- $g7.5.7.$tOral Mucositis -- $g7.5.8.$tVentilator-Associated Pneumonia -- $g7.5.9.$tSepsis and Endotoxemia -- $g7.6.$tSummary and Conclusions -- $tAppendices -- $tReferences -- $gChapter 8.$tAnabolic Dysfunction -- $g8.1.$tIntroduction -- $g8.1.1.$tAnabolic-Catabolic Imbalance -- $g8.1.2.$tAnabolic Dysfunction Allied to Nutrient and Hormone Resistance -- $g8.1.3.$tProtein Synthesis and Breakdown during Illness -- $g8.2.$tInsulin and Muscle Protein Metabolism -- $g8.2.1.$tInsulin Signaling -- $g8.2.2.$tInsulin Resistance of Glucose Metabolism -- $g8.2.3.$tInsulin Resistance of Muscle Protein Metabolism -- $g8.2.4.$tInsulinotropic Bioactive Peptides -- $g8.3.$tGrowth Hormone and IGF-1 -- $g8.3.1.$tProperties of Growth Hormone and IGF-1 -- $g8.3.2.$tGrowth Hormone Receptor Signal Transduction -- $g8.3.3.$tBiological Effects of Growth Hormone/IGF-1 Axis -- $g8.3.4.$tGrowth Hormone Resistance -- $g8.4.$tGrowth Hormone Secretagogues -- $g8.4.1.$tGrowth Hormone Release Peptides -- $g8.4.2.$tHexarelin and Alexamorelin -- $g8.4.3.$tGhrelin -- $g8.5.$tLeucine, BCAA, and Related Peptides -- $g8.5.1.$tEssential Amino Acids as Anabolic Agents -- $g8.5.2.$tThe Branched-Chain Amino Acids -- $g8.5.3.$tLeucine -- $g8.5.4.$tWhey Protein and Peptides -- $g8.6.$tIn Vivo Applications and Clinical Trials -- $g8.6.1.$tShort Bowel Syndrome -- $g8.6.2.$tHIV Patients -- $g8.6.3.$tChronic Renal Failure -- $g8.6.4.$tCritical Illness and Sepsis -- $g8.6.5.$tCancer Cachexia and Muscle Wasting -- $g8.6.6.$tLiver Disease -- $g8.6.7.$tAdverse Effects and Safety Concerns -- $tReferences -- $gChapter 9.$tBioactive Peptides for Alleviating Illness Anorexia -- $g9.1.$tIllness Anorexia -- $g9.1.1.$tModels for the Regulation of Food Intake -- $g9.1.2.$tBioactive Peptides and Energy Homeostasis -- $g9.1.3.$tAnorectic Bioactive Peptides -- $g9.1.4.$tSerotonin -- $g9.1.5.$tCytokines and Food Intake -- $g9.2.$tLeptin and Food Intake -- $g9.2.1.$tCharacteristics of Leptin Receptor Signaling -- $g9.2.2.$tLeptin Regulation of Food Intake -- $g9.2.3.$tLeptin Resistance during Obesity -- $g9.2.4.$tLeptin Role in Illness Anorexia -- $g9.3.$tMelanocortin Peptides -- $g9.3.1.$tMelanocyte-Stimulating Hormone -- $g9.3.2.$tMelanocortin Networks to Leptin and Serotonin Signaling -- $g9.3.3.$tMelanocortin Receptors -- $g9.3.4.$tPeptide Agonists and Antagonists for Melanocortin Receptors -- $g9.4.$tGhrelin -- $g9.4.1.$tCharacteristics of Ghrelin -- $g9.4.2.$tThe Ghrelin Receptor -- $g9.4.3.$tFactors Affecting Ghrelin Release -- $g9.4.3.1.$tGhrelin Circadian and Ultradian Rhythms -- $g9.4.3.2.$tFood Intake -- $g9.4.3.3.$tMacronutrient Composition -- $g9.4.3.4.$tHormones and Ghrelin Secretion -- $g9.4.3.5.$tGhrelin and Obesity -- $g9.4.3.6.$tFasting Weight Loss -- $g9.4.3.7.$tAging and Ghrelin Secretion -- $g9.4.3.8.$tCachexia -- $g9.4.4.$tExogenous Ghrelin and Food Intake -- $g9.4.5.$tMode of Ghrelin Orexigenic Action -- $g9.5.$tOther Bioactive Peptides for Moderating Appetite -- $g9.5.1.$tAgouti-Signaling Protein and AgRP -- $g9.5.2.$tNeuropeptide Y -- $g9.5.3.$tSerotonin Antagonists -- $g9.5.4.$tDietary Proteins and Satiety -- $g9.6.$tIn Vivo Studies and Controlled Trials -- $g9.6.1.$tCancer Anorexia -- $g9.6.2.$tPulmonary Obstructive Disease -- $g9.6.3.$tChronic Kidney Failure and Dialysis Patients -- $g9.6.4.$tHIV Infection Anorexia -- $g9.6.5.$tMelanocortin Antagonists for Anorexia Treatment -- $g9.7.$tSummary and Conclusions -- $tReferences.
520 1 $a"Chronic illnesses, injury, or infections produce a decline in muscle mass---leading to delayed recovery, more post-treatment complications, longer hospital stays, and higher mortality rates. Therefore, ensuring adequate lean body mass is of major concern in health care. Presentign data from human studies and trials, along with recent research findings, Bioactive Peptides: Applications for Improving Nutrition and Health summarizes the applications, and the benefits of bioactive peptides used to mitigate major metabolic derangements that arise from chronic illnesses and result in unwanted weight loss." "In chapters one through five, the book presents the background science on the relationship between illness and muscle weight loss, highlighting bioactive peptides' ability to enhance the body's antioxidant status, antisepsis capacity, immune function, anti-inflammatory capacity, growth potential, and appetite. Chapters six through nine deal with the use of bioactive peptides to modify aspects of the host response to illness, including inflammation, antimicrobial activity, anabolic dysfunction, and anorexia." "This state-of-the-art reference aalso includes case studies on aging, AIDS, COPD, diabetes, inflammatory bowel disease, kidney failure, and tuberculosis, it is a valuable resource for dieticians, doctors, nutritionists, and manufacturers of medical foods, tube feeds, supplements, and nutraceuticals."--BOOK JACKET.
650 0 $aPeptide drugs.$0http://id.loc.gov/authorities/subjects/sh94005143
650 0 $aDietary supplements.$0http://id.loc.gov/authorities/subjects/sh85037861
650 0 $aProteins$xMetabolism.$0http://id.loc.gov/authorities/subjects/sh85107672
650 0 $aProteins in human nutrition.$0http://id.loc.gov/authorities/subjects/sh85107679
650 0 $aAppetite stimulants.$0http://id.loc.gov/authorities/subjects/sh85006103
650 12 $aPeptides$xtherapeutic use.$0https://id.nlm.nih.gov/mesh/D010455Q000627
650 22 $aDietary Supplements.$0https://id.nlm.nih.gov/mesh/D019587
650 22 $aNutritional Physiological Phenomena.$0https://id.nlm.nih.gov/mesh/D009747
650 22 $aPeptides$xpharmacology.$0https://id.nlm.nih.gov/mesh/D010455Q000494
650 22 $aWasting Syndrome$xdiet therapy.$0https://id.nlm.nih.gov/mesh/D019282Q000178
650 22 $aWasting Syndrome$xetiology.$0https://id.nlm.nih.gov/mesh/D019282Q000209
852 00 $boff,hsl$hRM666.P415$iO98 2010