It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-016.mrc:182929009:12242
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-016.mrc:182929009:12242?format=raw

LEADER: 12242cam a2200373 a 4500
001 7992915
005 20221201051551.0
008 100517t20102010njua b 001 0 eng
010 $a 2010020783
020 $a9780470466117
020 $a0470466111
024 $a40018299898
035 $a(OCoLC)ocn471799266
035 $a(OCoLC)471799266
035 $a(NNC)7992915
035 $a7992915
040 $aDLC$cDLC$dBTCTA$dC#P$dOrLoB-B
042 $apcc
050 00 $aQD412.A3$bS55 2010
082 00 $a547/.05654$222
245 00 $aSilver in organic chemistry /$cedited by Michael Harmata.
260 $aHoboken, N.J. :$bJohn Wiley & Sons,$c[2010], ©2010.
300 $axx, 402 pages :$billustrations ;$c25 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references and index.
505 00 $g1.$tSilver Alkyls, Alkenyls, Aryls, and Alkynyls in Organic Synthesis /$rCraig M. Williams -- $g1.1.$tIntroduction -- $g1.2.$tCsp3-Ag -- $g1.2.1.$tSynthesis, Stability, and Reactivity of Alkylsilver Compounds -- $g1.2.2.$tSynthesis and Stability of Perfluoroalkylsilver Compounds -- $g1.2.3.$tReactivity of Perfluoroalkylsilver Compounds -- $g1.3.$tCsp2-Ag -- $g1.3.1.$tSynthesis and Stability of Arylsilver Compounds -- $g1.3.2.$tReactivity of Arylsilver Compounds -- $g1.3.3.$tSynthesis and Stability of Perfluoroarylsilver Compounds -- $g1.3.4.$tReactivity of Perfluoroarylsilver Compounds -- $g1.3.5.$tSynthesis, Stability, and Reactivity of Alkenylsilver Compounds -- $g1.3.6.$tSynthesis and Reactivity of Allenylsilver Compounds -- $g1.3.7.$tSynthesis of Perfluoroalkenylsilver Compounds -- $g1.3.8.$tReactivity of Perfluoroalkenylsilver Compounds -- $g1.3.9.$tSynthesis and Reactivity of Silver-Substituted Diazomethyl Compounds -- $g1.4.$tCsp-Ag -- $g1.4.1.$tSynthesis of Silver Acetylides -- $g1.4.2.$tReactivity of Silver Acetylides -- $g1.4.2.1.$tAddition to Activated Carbonyls and Iminium Ions -- $g1.4.2.2.$tNucleophilic Substitution of Activated Heteroaromatics -- $g1.4.2.3.$tReaction with Alkyl Halides -- $g1.4.2.4.$tCoupling Reactions -- $g1.4.2.5.$tReactions with Non-carbon Electrophiles -- $g1.4.2.6.$tFragmentation -- $g1.4.2.7.$tDesilylation -- $g1.5.$tConclusion -- $tReferences -- $g2.$tCycloaddition Reactions /$rErick M. Carreira -- $g2.1.$tIntroduction -- $g2.2.$t[2+2] Cycloadditions -- $g2.3.$t[3+2] Cycloadditions -- $g2.3.1.$t[3+2] Cycloadditions of Azomethine Ylides -- $g2.3.1.1.$tDiscovery and Development of the Silver-Catalyzed [3+2] Cycloaddition of Azomethine Ylides -- $g2.3.1.2.$tAuxiliary-Based Asymmetric [3+2] Cycloadditions -- $g2.3.1.3.$tCatalytic Asymmetric [3+2] Cycloadditions -- $g2.3.1.4.$tSelected Applications and Extensions of Azomethine [3+2] Cycloadditions -- $g2.3.2.$tOther [3+2] Cycloadditions -- $g2.4.$t[3+3] Cycloadditions -- $g2.5.$t[4+2] Cycloadditions -- $g2.6.$tConcluding Remarks -- $tReferences -- $g3.$tSigmatropic Rearrangements and Related Processes Promoted by Silver /$rPatrick Pale -- $g3.1.$tIntroduction -- $g3.2.$tWolff and Arndt-Eistert Rearrangements and Related Reactions -- $g3.3.$tRing Rearrangements -- $g3.3.1.$tHalogenoamines -- $g3.3.2.$tCyclopropane Derivatives -- $g3.3.3.$tCubane Derivatives -- $g3.3.4.$tHalogenocyclopropane Derivatives -- $g3.4.$t[3,3]-Sigmatropic Rearrangements -- $g3.4.1.$tWith Acyl as Migrating Groups -- $g3.4.2.$tWith Vinyl as Migrating Groups -- $g3.4.3.$tWith Migrating Groups Analogous to Acyl -- $g3.4.4.$t[3,3]-Sigmatropic Rearrangement and Cyclization Cascades -- $g3.5.$t[2,3]-Sigmatropic Rearrangements -- $g3.6.$t[1,2]-Sigmatropic Rearrangements -- $g3.6.1.$t1,2-Aryl or Alkenyl Migration -- $g3.6.2.$t1,2-Alkyl Migration -- $g3.6.3.$t1,2- or 1,5-Alkyl Migration -- $g3.6.4.$t1,2 versus 3,3 Migrations -- $g3.7.$tMiscellaneous -- $g3.8.$tConclusion -- $tReferences -- $g4.$tSilver(I)-Mediated Electrocyclic Processes /$rFrederick G. West -- $g4.1.$tIntroduction -- $g4.1.1.$tRing-Opening Reactions of Halocyclopropanes -- $g4.1.2.$tSilver(I)-Assisted Ring-Opening Reactions -- $g4.2.$tNucleophilic Trapping of Cationic Intermediates -- $g4.2.1.$tSolvolysis Reactions -- $g4.2.2.$tIntramolecular Trapping with Heteronucleophiles -- $g4.2.3.$tDiastereoselective Reactions -- $g4.2.4.$tCarbon-Carbon Bond Formation -- $g4.3.$tThe Silver(I)-Promoted Nazarov Reaction -- $g4.3.1.$tDevelopment and Initial Findings -- $g4.3.2.$tInterrupted Nazarov Reactions -- $g4.4.$tConcluding Remarks -- $tReferences -- $g5.$tSilver-Catalyzed Cycloisomerization Reactions /$rPhilippe Belmont -- $g5.1.$tIntroduction -- $g5.2.$tCycloisomerization of C=O onto C=C=C -- $g5.3.$tCycloisomerization of C=O onto C≡C -- $g5.4.$tCycloisomerization of C=N onto C=C=C -- $g5.5.$tCycloisomerization of C=N onto C≡C -- $g5.6.$tEne---Yne Cycloisomerization: C=C onto C≡C -- $g5.7.$tOther Transformations -- $g5.8.$tConclusion -- $tReferences -- $g6.$tSilver-Catalyzed Nitrene Transfer Reactions /$rChuan He -- $g6.1.$tIntroduction -- $g6.2.$tAziridination -- $g6.2.1.$tChloramine-T as Nitrene Precursor -- $g6.2.2.$tIminoiodanes as Nitrene Precursors -- $g6.2.3.$tHeterogenous Silver Catalysis -- $g6.3.$tSulfide and Sulfoxide Imination -- $g6.4.$tAmidation -- $g6.4.1.$tIntramolecular Amidation -- $g6.4.2.$tIntermolecular Amination with Phenanthroline Ligands -- $g6.4.3.$tIntermolecular Amination Based on Pyrazolylborate Ligands -- $g6.5.$tConclusion -- $tReferences -- $g7.$tSilver-Catalyzed Silylene Transfer /$rTom G. Driver -- $g7.1.$tIntroduction -- $g7.2.$tReactivity and Attributes of Metal Silylenoids and Silylmetal Complexes -- $g7.2.1.$tSynthesis of Transition Metal Complexes of Silylenes -- $g7.2.2.$tReactivity of Transition Metal Silylenoids -- $g7.2.3.$tTransition Metal Silylenoid Complex-Catalyzed Hydrosilation Reactions -- $g7.2.4.$tTransition Metal Silylenoid-Catalyzed Atom Transfer Reactions -- $g7.3.$tSilacyclopropanes as Important Synthetic Intermediates -- $g7.4.$tSilver-Mediated Transfer of Di-tert-Butylsilylene to Olefins -- $g7.5.$tSilver-Mediated Transfer of Di-tert-Butylsilylene to Acetylenes -- $g7.6.$tSilver-Mediated Transfer of Di-tert-Butylsilylene to Carbonyl Compounds -- $g7.7.$tSilver-Mediated Transfer of Di-tert-Butylsilylene to Imines -- $g7.8.$tSilver-Mediated Di-tert-Butylsilylene Insertion into C-O Bonds -- $g7.9.$tConclusion -- $tReferences -- $g8.$tSilver Carbenoids /$rCarl J. Lovely -- $g8.1.$tIntroduction -- $g8.2.$tWolff Rearrangement -- $g8.3.$tCarbene Transfer Reactions to π Bonds -- $g8.3.1.$tAziridination -- $g8.3.2.$tCyclopropanation -- $g8.4.$tFormation and Reactions of Ylides -- $g8.4.1.$tC-Hal Addition-Rearrangement -- $g8.4.2.$tC-S Addition-Rearrangement -- $g8.5.$tC-H Insertion -- $g8.6.$tN-H Insertion -- $g8.7.$tRing Expansion Reactions -- $g8.8.$tIntermediacy of Silver Carbenes -- $g8.9.$tMiscellaneous Reactions Involving Silver Carbenoids -- $g8.10.$tSummary -- $tAcknowledgments -- $tReferences -- $g9.$tAldol and Related Processes /$rHisashi Yamamoto -- $g9.1.$tIntroduction -- $g9.2.$tAllylation Reaction Using Allyltributyltin -- $g9.3.$tAllylation Reaction Using Allylsilanes -- $g9.4.$tAldol Reaction Using Tin Enolates -- $g9.5.$tAldol Reaction Using Silyl Enol Ethers -- $g9.6.$tMannich Reaction -- $g9.7.$tNitrosoaldol Reaction -- $g9.8.$tAldol Reaction with Azodicarboxylate -- $g9.9.$tConclusion -- $tReferences -- $g10.$tCoupling Reactions Promoted by Silver /$rPatrick Pale -- $g10.1.$tIntroduction -- $g10.2.$tsp3-sp3 Coupling Reactions Promoted by Silver Salts -- $g10.3.$tsp3-sp2 Coupling Reactions Promoted by Silver Salts -- $g10.4.$tsp3-sp Coupling Reactions Promoted by Silver Salts -- $g10.5.$tsp2-sp2 Coupling Reactions Promoted by Silver Salts -- $g10.5.1.$tHomocoupling of Vinyl- or Arylsilver Species -- $g10.5.2.$tOrganosilver Species as Nucleophilic Reagents -- $g10.5.3.$tSilver as a Lewis Acid Reagent -- $g10.5.4.$tSilver as a Halogen Scavenger -- $g10.5.4.1.$tSilver in Pd-Catalyzed Couplings -- $g10.5.4.2.$tSilver in PdII-Promoted Electrophilic Substitution of Arenes (C-H Activation) -- $g10.5.4.3.$tSilver as Reagent for Decarboxylative Coupling -- $g10.6.$tsp2-sp Coupling Reactions Promoted by Silver Salts -- $g10.6.1.$tOrganosilver Species as Nucleophilic Reagents -- $g10.6.2.$tOrganosilver Species in Transmetallations -- $g10.6.3.$tSilver as a Lewis Acid Reagent -- $g10.6.4.$tOrganosilver Species as Intermediates in Catalyzed Enyne or Arylyne Synthesis -- $g10.7.$tsp-sp Coupling Reactions Promoted by Silver Salts -- $g10.8.$tConclusion -- $tReferences -- $g11.$tSupramolecular Chemistry of Silver /$rJin-Quan Yu -- $g11.1.$tIntroduction -- $g11.2.$tCage-Like Complexes -- $g11.3.$tTube-Like Compounds -- $g11.4.$tPolycatenanes with Silver(I) -- $g11.5.$tPolyrotaxanes with Silver(I) -- $g11.6.$tSilver(I) Coordination Polymers with Specific Topology -- $g11.7.$tConclusion -- $tAcknowledgments -- $tReferences -- $g12.$tA Critical Comparison: Copper, Silver, and Gold /$rK. Hashmi -- $g12.1.$tIntroduction --
505 80 $g12.2.$tReactions Catalyzed by Copper, Silver, or Gold -- $g12.2.1.$tAldehyde-Alkyne-Amine Coupling -- $g12.2.2.$tCarbene Insertion Reactions -- $g12.2.3.$tIn Silico Comparison of Organocopper(I), Organosilver(I), and Organogold(I) -Ate Compounds -- $g12.2.4.$tCyclization of ortho-alkynylbenzaldehydes -- $g12.2.5.$tAllenyl Ketones: The Cycloisomerization to Furans -- $g12.2.6.$tA Thiol in the Substrate: The Cyclization of α-Thioallenes -- $g12.2.7.$tFurans by Propargyl Claisen Reaction -- $g12.2.8.$tTandem Cyclization/Pinacol Rearrangement -- $g12.2.9.$tFuranones by Domino Heterocyclization/1,2 Shift -- $g12.2.10.$tConia-ene Reaction -- $g12.3.$tReactions Catalyzed by Silver or Gold -- $g12.3.1.$tCyclization of N-Propargylcarboxamides -- $g12.3.2.$tDake's Pyrrole Synthesis -- $g12.3.3.$tCombination with Organocatalysis -- $g12.3.4.$tVinylallenes Deliver Cyclopentadienes -- $g12.3.5.$tα-Pyrones by a Cascade Reaction -- $g12.3.6.$tDihydrofurans from Propargyl Esters -- $g12.3.7.$tMethylene Butyrolactones by Addition of Carboxylates to Alkynes -- $g12.3.8.$tHydroarylation of Allenes -- $g12.3.9.$tDifferent Products by Silver and Gold Catalysts -- $g12.3.9.1.$tThe Epoxide-Alkyne Reaction -- $g12.3.9.2.$tThe Carbonyl-Alkyne Reaction -- $g12.4.$tReactions Catalyzed by Copper or Silver -- $g12.4.1.$tGeneral Trends -- $g12.4.2.$tPyrroles by Hydroamination -- $g12.4.3.$tCopper/Silver Cocatalysis -- $g12.4.4.$tCarbonylations -- $g12.5.$tConclusion -- $tReferences.
520 1 $a"With more sophisticated catalytic methodologies fueling a resurgence in the study of cation-based chemistry, gold and platinum have stepped to the fore as the unique agents used to create new chemical reactions. Although these metals have become a primary focus of researchers in the field, another coinage metal that is often overlooked---but is as powerful as the others---is silver, a far less costly alternative to gold and platinum in aiding the development of new reactions." "Making a strong case for the use of silver as a catalyst and structural element in organometal constructs, this authoritative book is the first to exlore the benefits of using silver in organic chemistry by taking a close look at silver's unique reactivity and structural characteristics for the development of new methods and materials. Silver in Organic Chemistry is" "Silver in Organic Chemistry promotes further scientific discussion by offering important new ways to examine the future possibilities of an emerging field. By elevating the importance of silver chemistry, this thought-provoking guide illustrates how this versatile metal can become an increasingly significant player in opening the door to new catalytic organic reactions and new organometal materials."--BOOK JACKET.
650 0 $aOrganosilver compounds.$0http://id.loc.gov/authorities/subjects/sh85095575
700 1 $aHarmata, Michael,$d1959-$0http://id.loc.gov/authorities/names/no2006072351
856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy1009/2010020783-d.html
856 42 $3Contributor biographical information$uhttp://www.loc.gov/catdir/enhancements/fy1009/2010020783-b.html
852 00 $bsci$hQD412.A3$iS55 2010