It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-019.mrc:48457115:1652
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-019.mrc:48457115:1652?format=raw

LEADER: 01652cam a2200313Ia 4500
001 9142533
005 20120117203418.0
008 111026s2011 sz a a 001 0 eng d
019 $a764348333
020 $a9783037190951
020 $a3037190957
035 $a(OCoLC)ocn768349738
035 $a(OCoLC)768349738$z(OCoLC)764348333
035 $a(NNC)9142533
040 $aMYG$cMYG$dBTCTA
050 4 $aQA613$b.N37 2011
100 1 $aNakanishi, Kenji.
245 10 $aInvariant manifolds and dispersive Hamiltonian evolution equations /$cKenji Nakanishi; Wilhelm Schlag.
260 $aZürich :$bEuropean Mathematical Society,$c2011.
300 $a253 p. :$bill. ;$c24 cm.
490 1 $aZurich lectures in advanced mathematics
520 $a"The notion of an invariant manifold arises naturally in the asymptotic stability analysis of stationary or standing wave solutions of unstable dispersive Hamiltonian evolution equations such as the focusing semilinear Klein Gordon and Schrodinger equations. [...] These lectures are suitable for graduate students and researchers in partial differential equations and mathematical physics. For the cubic Klein Gordon equation in three dimensions all details are provided, including the derivation of Strichartz estimates for the free equation and the concentration-compactness argument leading to scattering due to Kenig and Merle."--P.[4] of cover.
650 0 $aInvariant manifolds.
650 0 $aHamiltonian systems.
650 0 $aHyperbolic spaces.
650 0 $aKlein-Gordon equation.
700 1 $aSchlag, Wilhelm.
830 0 $aZurich lectures in advanced mathematics.
852 00 $bmat$hQA613$i.N37 2011g