It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-022.mrc:22876293:2091
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-022.mrc:22876293:2091?format=raw

LEADER: 02091cam a2200433 i 4500
001 10539084
005 20131216152935.0
008 130408s2013 riu b 001 0 eng
010 $a 2013004694
019 $a837947721
020 $a9780821849903 (alk. paper)
020 $a0821849905 (alk. paper)
035 $a(OCoLC)ocn837922003
035 $a(OCoLC)837922003$z(OCoLC)837947721
035 $a(NNC)10539084
040 $aDLC$beng$erda$cDLC$dOCLCO$dOCLCQ$dYDXCP$dBTCTA$dBDX$dTOZ
042 $apcc
050 00 $aQA179$b.A78 2013
082 00 $a512/.4$223
084 $a22E55$a22E50$a11R37$a11F66$a58C40$2msc
100 1 $aArthur, James,$d1944-,$eauthor.
245 14 $aThe endoscopic classification of representations orthogonal and symplectic groups /$cJames Arthur.
264 1 $aProvidence, Rhode Island :$bAmerican Mathematical Society,$c[2013]
300 $axviii, 590 pages ;$c26 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aColloquium publications / American Mathematical Society ;$vvolume 61
504 $aIncludes bibliographical references (pages 571-579) and indexes.
650 0 $aLinear algebraic groups.
650 0 $aClass field theory.
650 0 $aAlgebraic number theory.
650 7 $aTopological groups, Lie groups$xLie groups$xRepresentations of Lie and linear algebraic groups over global fields and adèle rings.$2msc
650 7 $aTopological groups, Lie groups$xLie groups$xRepresentations of Lie and linear algebraic groups over local fields.$2msc
650 7 $aNumber theory$xAlgebraic number theory: global fields$xClass field theory.$2msc
650 7 $aNumber theory$xDiscontinuous groups and automorphic forms$xLanglands $L$-functions; one variable Dirichlet series and functional equations.$2msc
650 7 $aGlobal analysis, analysis on manifolds$xCalculus on manifolds; nonlinear operators$xSpectral theory; eigenvalue problems.$2msc
830 0 $aColloquium publications (American Mathematical Society) ;$vv. 61.
852 00 $bmat$hQA1$i.A5225 v.61