Record ID | marc_columbia/Columbia-extract-20221130-025.mrc:12562340:6060 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-025.mrc:12562340:6060?format=raw |
LEADER: 06060cam a2200721 i 4500
001 12039668
005 20221126225149.0
006 m eo d
007 cr cn||||m|||a
008 150124s2015 nyua foab 001 0 eng d
035 $a(OCoLC)ocn900732838
035 $a(NNC)12039668
040 $aNYMPP$beng$erda$epn$cNYMPP$dOCLCO$dE7B$dMYG$dYDXCP$dN$T$dZCU$dAGLDB$dUPM$dOCLCQ$dVTS$dSTF$dLOA$dCUY$dICG$dK6U$dVT2$dU3W$dCNCEN$dOCLCQ$dG3B$dLVT$dS8J$dS9I$dTKN$dD6H$dM8D$dOCLCO$dOCLCQ
019 $a1178954249
020 $a9781606503850$q(electronic bk.)
020 $a1606503855$q(electronic bk.)
020 $z9781606503836$q(print)
024 7 $a10.5643/9781606503850$2doi
035 $a(OCoLC)900732838$z(OCoLC)1178954249
050 4 $aTA416$b.A763 2015
072 7 $aTEC$x000000$2bisacsh
082 04 $a602.87$223
049 $aZCUA
100 1 $aArpaia, Pasquale,$eauthor.
245 10 $aFlexible test automation :$ba software framework for easily developing measurement applications /$cPasquale Arpaia, Ernesto De Matteis, and Vitaliano Inglese.
264 1 $aNew York [New York] (222 East 46th Street, New York, NY 10017) :$bMomentum Press,$c2015.
300 $a1 online resource (1 PDF (xxxiii, 287 pages)) :$billustrations
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
490 1 $aIndustrial, systems, and innovation engineering collection
500 $aTitle from PDF title page (viewed on January 24, 2015).
504 $aIncludes bibliographical references and index.
505 0 $aPart I. Background -- 1. Software for measurement applications -- 1.1 Overview -- 1.2 Basics -- 1.3 Main market solutions -- 1.4 Research: state of the art -- References.
505 8 $a2. Software frameworks for measurement applications -- 2.1 Overview -- 2.2 General concepts -- 2.3 Why a framework for measurements? -- 2.4 Domain specific languages -- 2.5 Requirements of a framework for measurement applications -- References.
505 8 $a3. Object- and aspect-oriented programming for measurement applications -- 3.1 Overview -- 3.2 Object-oriented programming -- 3.3 Aspect-oriented programming -- References.
505 8 $aPart II. Methodology -- 4. A flexible software framework for measurement applications -- 4.1 Overview -- 4.2 Framework paradigm -- 4.3 Fault detector -- 4.4 Synchronizer -- 4.5 Measurement-domain specific language -- 4.6 Advanced generator of user interfaces -- References.
505 8 $a5. Quality assessment of measurement software -- 5.1 Overview -- 5.2 Software quality -- 5.3 The standard ISO 9126 -- 5.4 Quality pyramid -- 5.5 Measuring flexibility -- References.
505 8 $aPart III. Case study -- 6. The flexible framework for magnetic measurements at CERN -- 6.1 Overview -- 6.2 Methods for magnetic field measurements -- 6.3 Automatic systems for magnetic measurements -- 6.4 Software for magnetic measurements at CERN -- 6.5 Flexibility requirements for magnetic measurement automation -- 6.6 The framework FFMM -- References.
505 8 $a7. Implementation -- 7.1 Overview -- 7.2 Base service layer -- 7.3 Core service layer -- 7.4 Measurement service layer -- 7.5 User service layer -- 7.6 Software quality assessment -- References.
505 8 $a8. Framework component validation -- 8.1 Overview -- 8.2 Fault detector -- 8.3 Synchronizer -- 8.4 Domain specific language -- 8.5 Advanced user interfaces generator -- References.
505 8 $a9. Framework validation on LHC-related applications -- 9.1 Overview -- 9.2 On-field functional tests -- 9.3 Flexibility experimental tests -- 9.4 Discussion -- References -- Index.
520 3 $aIn laboratory management of an industrial test division, a test laboratory, or a research center, one of the main activities is producing suitable software for automatic benches by satisfying a given set of requirements. This activity is particularly costly and burdensome when test requirements are variable over time. If the batches of objects under test have small size and frequent occurrence, the activity of measurement automation becomes predominating with respect to the execution. In this book, the development of a software framework is shown to be as a useful solution to satisfy this exigency. The framework supports the user in producing measurement applications for a wide range of requirements with low effort and development time. Furthermore, the software quality, in terms of flexibility, usability, and maintainability, is maximized. After a background on software for measurement automation and the related programming techniques, the structure and the main components of a software framework for measurement applications are illustrated. Their design and implementation are highlighted by referring to a practical application: the Flexible Framework for Magnetic Measurements (FFMM) at the European Organization for Nuclear Research (CERN). Finally, an experimental approach to the software flexibility assessment of measurement frameworks is presented by highlighting its application to FFMM.
650 0 $aTesting laboratories$xAutomation.
650 0 $aPhysical measurements$xAutomation.
650 0 $aMagnetic measurements$xAutomation.
650 6 $aLaboratoires d'essais$xAutomatisation.
650 6 $aMesures physiques$xAutomatisation.
650 6 $aMesures magnétiques$xAutomatisation.
650 7 $aTECHNOLOGY & ENGINEERING$xGeneral.$2bisacsh
653 $aapplication software
653 $aautomatic programming
653 $amagnetic measurements
653 $ameasurement automation
653 $aparticle accelerators
653 $asoftware frameworks
653 $asoftware systems
700 1 $aDe Matteis, Ernesto,$eauthor.
700 1 $aInglese, Vitaliano,$eauthor.
776 08 $iPrint version:$z9781606503836
830 0 $aIndustrial, systems, and innovation engineering collection.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio12039668$zAll EBSCO eBooks
852 8 $blweb$hEBOOKS