Record ID | marc_columbia/Columbia-extract-20221130-025.mrc:203605406:2929 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-025.mrc:203605406:2929?format=raw |
LEADER: 02929cam a2200373 i 4500
001 12474433
005 20170619163908.0
008 161219s2018 caua b 001 0 eng
010 $a 2016048460
019 $a975905377
020 $a9781483358598$qhardcover ;$qalkaline paper
020 $a1483358593$qhardcover ;$qalkaline paper
024 $a99971790882
035 $a(OCoLC)ocn967133901
035 $a(OCoLC)967133901$z(OCoLC)975905377
035 $a(NNC)12474433
040 $aDLC$beng$erda$cDLC$dOCLCF$dYDX$dOCLCQ$dYDX
050 00 $aHA29$b.F76812 2018
082 00 $a001.4/22$223
100 1 $aFrieman, Jerome,$eauthor.
245 10 $aPrinciples & methods of statistical analysis /$cJerome Frieman, Donald A. Saucier, Stuart S. Miller, Kansas State University.
246 3 $aPrinciples and methods of statistical analysis
264 1 $aThousand Oaks, California :$bSAGE Publications, Inc.,$c[2018]
300 $axxix, 496 pages ;$c24 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
504 $aIncludes bibliographical references and index.
505 0 $aAbout the authors -- Getting started -- The big picture -- Examining our data : an introduction to some of the techniques of exploratory data analysis -- The behavior of data -- Properties of distributions : the building blocks of statistical inference -- The basics of statistical inference : drawing conclusions from our data -- Estimating parameters of populations from sample data -- Resistant estimators of parameters -- General principles of hypothesis testing -- Specific techniques to answer specific questions -- The independent groups t-tests for testing for differences between population means -- Testing hypotheses where the dependent variable consists of frequencies of scores in various categories -- The randomization/permutation model : an alternative to the classical statistical model for testing hypotheses about treatment effects -- Exploring the relationship between two variables : correlation -- Exploring the relationship between two variables : the linear regression model -- A closer look at linear regression -- Another way to scale the size of treatment effects -- Analysis of variance for testing for differences between population means -- Multiple regression and beyond -- Epilogue -- Appendices -- A. Some useful rules of algebra -- B. Rules of summation -- C. Logarithms -- Table of the inverse of the cumulative normal distribution -- E. The unit normal distribution -- F. The t distribution -- G. Table for the fisher r to Zr transformation -- H. Critical values for F with alpha = .05 -- The chi square distribution -- Index.
650 0 $aStatistics$xMethodology.
650 7 $aStatistics$xMethodology.$2fast$0(OCoLC)fst01132125
700 1 $aSaucier, Donald A.,$eauthor.
700 1 $aMiller, Stuart S.,$eauthor.
852 00 $bmat$hHA29$i.F76812 2018