Record ID | marc_columbia/Columbia-extract-20221130-025.mrc:41033995:5699 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-025.mrc:41033995:5699?format=raw |
LEADER: 05699cam a2200673Ii 4500
001 12110824
005 20220528224341.0
006 m o d
007 cr cnu|||unuuu
008 151201s2015 maua ob 001 0 eng d
035 $a(OCoLC)ocn930703413
035 $a(NNC)12110824
040 $aN$T$beng$erda$epn$cN$T$dOPELS$dN$T$dOCLCO$dIDEBK$dYDXCP$dOCLCF$dOCLCO$dCDX$dEBLCP$dOCLCO$dOCLCQ$dOCLCO$dKNOVL$dZCU$dCOO$dUAB$dOCLCQ$dOKS$dMEU$dD6H$dOCLCQ$dCEF$dRRP$dAU@$dCUY$dMERUC$dICG$dDKC$dOCLCQ$dERF$dOCLCQ$dMM9$dOCLCQ$dOCLCO
019 $a932334023$a951675501$a1039527629$a1044284070$a1047751226$a1056523831$a1058223575$a1060911316$a1073073573
020 $a9780128030448$qelectronic bk.
020 $a0128030445$qelectronic bk.
020 $z9780128030271
020 $a0128030275
020 $a9780128030271
035 $a(OCoLC)930703413$z(OCoLC)932334023$z(OCoLC)951675501$z(OCoLC)1039527629$z(OCoLC)1044284070$z(OCoLC)1047751226$z(OCoLC)1056523831$z(OCoLC)1058223575$z(OCoLC)1060911316$z(OCoLC)1073073573
050 4 $aTK7874.85$b.S46 2015eb
072 7 $aTEC$x009070$2bisacsh
082 04 $a621.3815$223
084 $a33.60$2bcl
049 $aZCUA
245 00 $aSemiconductor Nanowires.$nI,$pGrowth and Theory /$cedited by Anna Fontcuberta I. Morral, Shadi A. Dayeh and Chennupati Jagadish.
246 30 $aGrowth and Theory
264 1 $aWaltham, MA :$bAcademic Press is an imprint of Elsevier,$c2015.
300 $a1 online resource (x, 314 pages :$billustrations).
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
490 1 $aSemiconductors and semimetals ;$vvolume 93
546 $aText in English.
588 0 $aOnline resource; title from title details screen (ScienceDirect, viewed December 2, 2015).
505 0 $aFront Cover; Semiconductor Nanowires I: Growth and Theory; Copyright; Contents; Contributors; Preface; Chapter One: Theory of VLS Growth of Compound Semiconductors; 1. Introduction; 2. Fundamentals of VLS Growth; 3. Chemical Potentials for Au-Catalyzed VLS Growth of III-V Nanowires; 4. Growth Kinetics of III-V Nanowires; 5. Transport-Limited Growth of Nanowires; 6. Nucleation Rate in VLS Nanowires; 7. Position-Dependent Nucleation in Nanowires; 8. Self-consistent Growth Equation; 9. Ga-Catalyzed Growth of GaAs Nanowires; 10. Formation of Ternary Au-Catalyzed III-V Nanowires.
505 8 $a11. Impact of Growth Conditions on the Crystal Structure of III-V NanowiresReferences; Chapter Two: Strain in Nanowires and Nanowire Heterostructures; 1. Introduction; 1.1. Scope; 1.2. Heterostructures, Mismatch, and Accommodation; 1.3. Nanowire Specificities; 2. Methods of Calculation and Measurement of Strain in Nanowires; 2.1. Calculation of Elastic Strain; 2.2. Experimental Assessment of Elastic Strain and Plastic Relaxation; 3. Axial Heterostructures; 3.1. Calculation of Elastic Relaxation in Axial Heterostructures.
505 8 $a3.2. Critical Dimensions for the Plastic Relaxation of Axial Heterostructures3.2.1. Theory; 3.2.2. Experiments; 4. Nanowires on a Misfitting Substrate; 5. Core-Shell Heterostructures; 5.1. Elastic Relaxation in Core-Shell Heterostructures: Theoretical Considerations; 5.2. Plastic Relaxation and Critical Dimensions in Core-Shell Heterostructures; 5.2.1. Theoretical Considerations; 5.2.2. Calculations; 5.2.3. Which Dislocations May Actually Form?; 5.2.4. Results; 5.2.5. Experiments; 6. Other Possible Instances of Strain Relaxation in NWs.
505 8 $a6.1. Augmented Strain Relaxation via Morphological Changes6.2. Stacking Faults, Twins, and Polytypism; 6.3. Sidewall-Induced and Edge-Induced Strains; 7. Summary and Conclusions; References; Chapter Three: van der Waals Heteroepitaxy of Semiconductor Nanowires; 1. Introduction; 1.1. Heteroepitaxy of Semiconductors on Atomic-Layered Materials (ALMs); 1.2. van der Waals Epitaxy (Versus Covalent Epitaxy); 2. van der Waals (vdW) Heteroepitaxy of Semiconductor Nanowires; 2.1. Vertically Aligned Nanowires on 2d-ALMs; 2.2. Nanowire Heterostructure.
505 8 $a2.3. vdW Epitaxial Nanowires on a Monoatomic Layer Substrate2.4. vdW Epitaxial Double Heterostructure: InAs/Graphene/InAs; 3. vdW Heteroepitaxial Relationship and Heterointerface of Nanowire/2d-ALM; 3.1. Nearly Commensurate System: InAs/Graphene; 3.2. Highly Incommensurate System: ZnO/hBN and ZnO/Mica; 4. Controlled vdW Epitaxy of Semiconductor Nanowires; 4.1. Nucleation and Growth on 2d-ALM with Surface Imperfections; 4.2. Position- and Shape-Controlled vdW Epitaxy; 5. Optoelectronic Device Applications; 6. Conclusions and Perspectives; Acknowledgment; References.
504 $aIncludes bibliographical references and index.
506 $aAccess restricted to Ryerson students, faculty and staff.$5CaOTR
650 0 $aNanowires.
650 0 $aSemiconductors$xMaterials.
650 2 $aNanowires
650 6 $aNanofils.
650 6 $aSemi-conducteurs$xMatériaux.
650 7 $aTECHNOLOGY & ENGINEERING$xMechanical.$2bisacsh
650 7 $aNanowires.$2fast$0(OCoLC)fst01032641
650 7 $aSemiconductors$xMaterials.$2fast$0(OCoLC)fst01112237
655 0 $aElectronic books.
655 4 $aElectronic books.
700 1 $aFontcuberta i Morral, Anna,$eeditor.
700 1 $aDayeg, Shadi A.,$eeditor.
700 1 $aJagadish, C.$q(Chennupati),$eeditor.
776 08 $iPrint version:$aFontcuberta i Morral, Anna.$tSemiconductor Nanowires I: Growth and Theory.$d: Elsevier Science, ©2015
830 0 $aSemiconductors and semimetals ;$vv. 93.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio12110824$zACADEMIC - Electronics & Semiconductors
852 8 $blweb$hEBOOKS