Record ID | marc_columbia/Columbia-extract-20221130-025.mrc:41073569:3740 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-025.mrc:41073569:3740?format=raw |
LEADER: 03740cam a2200601 i 4500
001 12110836
005 20220212224113.0
006 m o d
007 cr cnu---unuuu
008 160222s2015 vaua ob 001 0 eng d
035 $a(OCoLC)ocn940509423
035 $a(NNC)12110836
040 $aKNOVL$beng$erda$epn$cKNOVL$dOCLCO$dOTZ$dLGG$dB24X7$dVLB$dOCLCO$dCOO$dOCLCO$dZCU$dOCLCQ$dUIU$dYDX$dK6U$dCEF$dEZ9$dRRP$dOCLCQ$dWYU$dAU@$dOCLCQ$dS9I$dOCLCQ
019 $a932003169$a1097131448
020 $a9781523100804$q(electronic bk.)
020 $a152310080X$q(electronic bk.)
020 $a9781624102790
020 $a1624102794
020 $z9781624102783
020 $z1624102786
035 $a(OCoLC)940509423$z(OCoLC)932003169$z(OCoLC)1097131448
050 4 $aTL570$b.J33 2015
082 04 $a629.130113$222
049 $aZCUA
100 1 $aJategaonkar, Ravindra V.,$eauthor.
245 10 $aFlight vehicle system identification :$ba time-domain methodology /$cRavindra V. Jategaonkar.
250 $aSecond edition.
264 1 $aReston, VA :$bAmerican Institute of Aeronautics and Astronautics, Inc.,$c[2015]
264 4 $c©2015
300 $a1 online resource (xviii, 627 pages) :$billustrations
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file
347 $bPDF
490 1 $aProgress in astronautics and aeronautics ;$vvolume 245
504 $aIncludes bibliographical references and index.
505 0 $aIntroduction -- Data gathering -- Model postulates and simulation -- Output-error method -- Filter-error method -- Equation-error methods -- Recursive parameter estimation -- Artificial neural networks -- Unstable aircraft identification -- Data compatibility check -- Model validation -- Selected advanced examples.
588 0 $aPrint version record.
520 $aThis book offers a systematic approach to flight vehicle system identification and covers the time-domain methodology. It addresses theoretical and practical aspects of parameter estimation methods, including those in the stochastic framework focusing on nonlinear models, cost function, optimization methods, and residual analysis. A pragmatic and balanced account of pros and cons in each case is provided. It presents data gathering and model validation, covering large-scale and high-fidelity modeling. Real-world problems dealing with a variety of flight vehicle applications are addressed, and solutions are provided. Examples include: estimation of aerodynamic stability and control derivatives from flight data; flight-path reconstruction; nonlinearities in control surface effectiveness; stall hysteresis; unstable aircraft; flexible aircraft model integrating rigid-body and structural dynamics; wake vortex encounters; and other critical considerations. --$cEdited summary from book.
650 0 $aAerodynamics$xMathematical models.
650 0 $aAeronautics$xMathematical models.
650 0 $aSystem identification.
650 0 $aTime-domain analysis.
650 7 $aAerodynamics$xMathematical models.$2fast$0(OCoLC)fst00798203
650 7 $aAeronautics$xMathematical models.$2fast$0(OCoLC)fst00798367
650 7 $aSystem identification.$2fast$0(OCoLC)fst01141418
650 7 $aTime-domain analysis.$2fast$0(OCoLC)fst01151183
655 4 $aElectronic books.
776 08 $iPrint version:$aJategaonkar, Ravindra V.$tFlight vehicle system identification.$bSecond edition$z9781624102783$w(OCoLC)903532332
830 0 $aProgress in astronautics and aeronautics ;$vv. 245.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio12110836$zACADEMIC - Aerospace & Radar Technology
852 8 $blweb$hEBOOKS