Record ID | marc_columbia/Columbia-extract-20221130-026.mrc:24965302:18629 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-026.mrc:24965302:18629?format=raw |
LEADER: 18629cam a2200685Ia 4500
001 12572842
005 20220528224307.0
006 m o d
007 cr cn|||||||||
008 110104s2007 ne a ob 001 0 eng d
010 $z 2008270218
035 $a(OCoLC)ocn694853474
035 $a(NNC)12572842
040 $aKNOVL$beng$epn$cKNOVL$dCEF$dOCLCQ$dN$T$dYDXCP$dZCU$dE7B$dLGG$dB24X7$dMERUC$dOCLCQ$dKNOVL$dOCLCF$dOCLCQ$dOCLCO$dCOO$dKNOVL$dOCLCQ$dAZK$dAGLDB$dZ5A$dMOR$dOCLCO$dJBG$dPIFAG$dOCLCQ$dU3W$dCOCUF$dSTF$dWRM$dOCLCQ$dVTS$dMERER$dNRAMU$dCUY$dRRP$dOCLCQ$dINT$dVT2$dOCLCQ$dWYU$dOCLCQ$dM8D$dERF$dOCLCQ$dUKCRE$dVLY$dMM9$dEUN$dOCLCO$dOCLCQ$dOCLCO
019 $a182732361$a191824891$a507441231$a647696790$a703375233$a765134772$a961641248$a962621398$a988533736$a992036959$a1037719608$a1038601522$a1045439726$a1055388707$a1062972526$a1081292503$a1153541034$a1162015508$a1228568043$a1241806571$a1259234235$a1290092481$a1300579270
020 $a9780080552866$q(electronic bk.)
020 $a0080552862$q(electronic bk.)
020 $a9780750669061
020 $a0750669063
020 $a1281077364
020 $a9781281077363
020 $a9786611077365
020 $a6611077367
035 $a(OCoLC)694853474$z(OCoLC)182732361$z(OCoLC)191824891$z(OCoLC)507441231$z(OCoLC)647696790$z(OCoLC)703375233$z(OCoLC)765134772$z(OCoLC)961641248$z(OCoLC)962621398$z(OCoLC)988533736$z(OCoLC)992036959$z(OCoLC)1037719608$z(OCoLC)1038601522$z(OCoLC)1045439726$z(OCoLC)1055388707$z(OCoLC)1062972526$z(OCoLC)1081292503$z(OCoLC)1153541034$z(OCoLC)1162015508$z(OCoLC)1228568043$z(OCoLC)1241806571$z(OCoLC)1259234235$z(OCoLC)1290092481$z(OCoLC)1300579270
037 $bKnovel Corporation$nhttp://www.knovel.com
050 4 $aTN690$b.S56 2007eb
072 7 $aTEC$x023000$2bisacsh
082 04 $a669/.9$222
084 $aUQ 7020$2rvk
049 $aZCUA
100 1 $aSmallman, R. E.
245 10 $aPhysical metallurgy and advanced materials.
250 $a7th ed. /$bR.E. Smallman, A.H.W. Ngan.
260 $aAmsterdam ;$aBoston :$bButterworth Heinemann,$c2007.
300 $a1 online resource (xxi, 650 pages) :$billustrations
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
504 $aIncludes bibliographical references and index.
588 0 $aPrint version record.
520 $aPhysical Metallurgy and Advanced Materials is the latest edition of the classic book previously published as Modern Physical Metallurgy & Materials Engineering. Fully revised and expanded, this new edition develops on its predecessor by including detailed coverage of the latest topics in metallurgy and material science. Intended for senior undergraduates and graduate students it emphasises the science, production and applications of engineering materials. It is suitable for all post-introductory materials science courses.
505 0 $a1. Atoms and atomic arrangements -- 2. Phase equilibria and structure -- 3. Crystal defects -- 4. Characterization and analysis -- 5. Physical properties -- 6. Mechanical properties I -- 7. Mechanical properties II -- Strengthening and toughening -- 8. Advanced alloys -- 9. Oxidation, corrosion and surface treatment -- 10. Non-metallics I -- Ceramics, glass, glass-ceramics -- 11. Non-metallics II -- Polymers, plastics, composites -- 12. Case examination of biomaterials, sports materials and nanomaterials.
505 00 $g1.$tAtoms and atomic arrangements --$g1.1.$tThe realm of materials science --$g1.2.$tThe free atom --$g1.2.1.$tThe four electron quantum numbers --$g1.2.2.$tNomenclature for the electronic states --$g1.3.$tThe Periodic Table --$g1.4.$tInteratomic bonding in materials --$g1.5.$tBonding and energy levels --$g1.6.$tCrystal lattices and structures --$g1.7.$tCrystal directions and planes --$g1.8.$tStereographic projection --$g1.9.$tSelected crystal structures --$g1.9.1.$tPure metals --$g1.9.2.$tDiamond and graphite --$g1.9.3.$tCoordination in ionic crystals --$g1.9.4.$tAB-type compounds --$g2.$tPhase equilibria and structure --$g2.1.$tCrystallization from the melt --$g2.1.1.$tFreezing of a pure metal --$g2.1.2.$tPlane-front and dendritic solidification at a cooled surface --$g2.1.3.$tForms of cast structure --$g2.1.4.$tGas porosity and segregation --$g2.1.5.$tDirectional solidification --$g2.1.6.$tProduction of metallic single crystals for research --$g2.2.$tPrinciples and applications of phase diagrams --$g2.2.1.$tThe concept of a phase --$g2.2.2.$tThe Phase Rule --$g2.2.3.$tStability of phases --$g2.2.4.$tTwo-phase equilibria --$g2.2.5.$tThree-phase equilibria and reactions --$g2.2.6.$tIntermediate phases --$g2.2.7.$tLimitations of phase diagrams --$g2.2.8.$tSome key phase diagrams --$g2.2.9.$tTernary phase diagrams --$g2.3.$tPrinciples of alloy theory --$g2.3.1.$tPrimary substitutional solid solutions --$g2.3.2.$tInterstitial solid solutions --$g2.3.3.$tTypes of intermediate phases --$g2.3.4.$tOrder-disorder phenomena --$g2.4.$tThe mechanism of phase changes --$g2.4.1.$tKinetic considerations --$g2.4.2.$tHomogeneous nucleation --$g2.4.3.$tHeterogeneous nucleation --$g2.4.4.$tNucleation in solids --$g3.$tCrystal defects --$g3.1.$tTypes of imperfection --$g3.2.$tPoint defects --$g3.2.1.$tPoint defects in metals --$g3.2.2.$tPoint defects in non-metallic crystals --$g3.2.3.$tIrradiation of solids --$g3.2.4.$tPoint defect concentration and annealing --$g3.3.$tLine defects --$g3.3.1.$tConcept of a dislocation --$g3.3.2.$tEdge and screw dislocations --$g3.3.3.$tThe Burgers vector --$g3.3.4.$tMechanisms of slip and climb --$g3.3.5.$tStrain energy associated with dislocations --$g3.3.6.$tDislocations in ionic structures --$g3.4.$tPlanar defects --$g3.4.1.$tGrain boundaries --$g3.4.2.$tTwin boundaries --$g3.4.3.$tExtended dislocations and stacking faults in close-packed crystals --$g3.5.$tVolume defects --$g3.5.1.$tVoid formation and annealing --$g3.5.2.$tIrradiation and voiding --$g3.5.3.$tVoiding and fracture --$g3.6.$tDefect behavior in common crystal structures --$g3.6.1.$tDislocation vector diagrams and the Thompson tetrahedron --$g3.6.2.$tDislocations and stacking faults in fcc structures --$g3.6.3.$tDislocations and stacking faults in cph structures --$g3.6.4.$tDislocations and stacking faults in bcc structures --$g3.6.5.$tDislocations and stacking faults in ordered structures --$g3.7.$tStability of defects --$g3.7.1.$tDislocation loops --$g3.7.2.$tVoids --$g3.7.3.$tNuclear irradiation effects.
505 00 $g4.$tCharacterization and analysis --$g4.1.$tTools of characterization --$g4.2.$tLight microscopy --$g4.2.1.$tBasic principles --$g4.2.2.$tSelected microscopical techniques --$g4.3.$tX-ray diffraction analysis --$g4.3.1.$tProduction and absorption of X-rays --$g4.3.2.$tDiffraction of X-rays by crystals --$g4.3.3.$tX-ray diffraction methods --$g4.3.4.$tTypical interpretative procedures for diffraction patterns --$g4.4.$tAnalytical electron microscopy --$g4.4.1.$tInteraction of an electron beam with a solid --$g4.4.2.$tThe transmission electron microscope (TEM) --$g4.4.3.$tThe scanning electron microscope --$g4.4.4.$tTheoretical aspects of TEM --$g4.4.5.$tChemical microanalysis --$g4.4.6.$tElectron energy-loss spectroscopy (EELS) --$g4.4.7.$tAuger electron spectroscopy (AES) --$g4.5.$tObservation of defects --$g4.5.1.$tEtch pitting --$g4.5.2.$tDislocation decoration --$g4.5.3.$tDislocation strain contrast in TEM --$g4.5.4.$tContrast from crystals --$g4.5.5.$tImaging of dislocations --$g4.5.6.$tImaging of stacking faults --$g4.5.7.$tApplication of dynamical theory --$g4.5.8.$tWeak-beam microscopy --$g4.6.$tScanning probe microscopy --$g4.6.1.$tScanning tunneling microscopy (STM) --$g4.6.2.$tAtomic force microscopy (AFM) --$g4.6.3.$tApplications of SPM --$g4.6.4.$tNanoindentation --$g4.7.$tSpecialized bombardment techniques --$g4.7.1.$tNeutron diffraction --$g4.7.2.$tSynchrotron radiation studies --$g4.7.3.$tSecondary ion mass spectrometry (SIMS) --$g4.8.$tThermal analysis --$g4.8.1.$tGeneral capabilities of thermal analysis --$g4.8.2.$tThermogravimetric analysis --$g4.8.3.$tDifferential thermal analysis --$g4.8.4.$tDifferential scanning calorimetry --$g5.$tPhysical properties --$g5.1.$tIntroduction --$g5.2.$tDensity --$g5.3.$tThermal properties --$g5.3.1.$tThermal expansion --$g5.3.2.$tSpecific heat capacity --$g5.3.3.$tThe specific heat curve and transformations --$g5.3.4.$tFree energy of transformation --$g5.4.$tDiffusion --$g5.4.1.$tDiffusion laws --$g5.4.2.$tMechanisms of diffusion --$g5.4.3.$tFactors affecting diffusion --$g5.5.$tAnelasticity and internal friction --$g5.6.$tOrdering in alloys --$g5.6.1.$tLong-range and short-range order --$g5.6.2.$tDetection of ordering --$g5.6.3.$tInfluence of ordering on properties --$g5.7.$tElectrical properties --$g5.7.1.$tElectrical conductivity --$g5.7.2.$tSemiconductors --$g5.7.3.$tHall effect --$g5.7.4.$tSuperconductivity --$g5.7.5.$tOxide superconductors --$g5.8.$tMagnetic properties --$g5.8.1.$tMagnetic susceptibility --$g5.8.2.$tDiamagnetism and paramagnetism --$g5.8.3.$tFerromagnetism --$g5.8.4.$tMagnetic alloys --$g5.8.5.$tAnti-ferromagnetism and ferrimagnetism --$g5.9.$tDielectric materials --$g5.9.1.$tPolarization --$g5.9.2.$tCapacitors and insulators --$g5.9.3.$tPiezoelectric materials --$g5.9.4.$tPyroelectric and ferroelectric materials --$g5.10.$tOptical properties --$g5.10.1.$tReflection, absorption and transmission effects --$g5.10.2.$tOptical fibers --$g5.10.3.$tLasers --$g5.10.4.$tCeramic 'windows' --$g5.10.5.$tElectro-optic ceramics --$g6.$tMechanical properties I --$g6.1.$tMechanical testing procedures --$g6.1.1.$tIntroduction --$g6.1.2.$tThe tensile test --$g6.1.3.$tIndentation hardness testing --$g6.1.4.$tImpact testing --$g6.1.5.$tCreep testing --$g6.1.6.$tFatigue testing --$g6.2.$tElastic deformation --$g6.3.$tPlastic deformation --$g6.3.1.$tSlip and twinning --$g6.3.2.$tResolved shear stress --$g6.3.3.$tRelation of slip to crystal structure --$g6.3.4.$tLaw of critical resolved shear stress --$g6.3.5.$tMultiple slip --$g6.3.6.$tRelation between work hardening and slip --$g6.4.$tDislocation behavior during plastic deformation --$g6.4.1.$tDislocation mobility --$g6.4.2.$tVariation of yield stress with temperature and strain rate --$g6.4.3.$tDislocation source operation --$g6.4.4.$tDiscontinuous yielding --$g6.4.5.$tYield points and crystal structure --$g6.4.6.$tDiscontinuous yielding in ordered alloys --$g6.4.7.$tSolute-dislocation interaction --$g6.4.8.$tDislocation locking and temperature --$g6.4.9.$tInhomogeneity interaction --$g6.4.10.$tKinetics of strain ageing --$g6.4.11.$tInfluence of grain boundaries on plasticity --$g6.4.12.$tSuperplasticity --$g6.5.$tMechanical twinning --$g6.5.1.$tCrystallography of twinning --$g6.5.2.$tNucleation and growth of twins --$g6.5.3.$tEffect of impurities on twinning --$g6.5.4.$tEffect of prestrain on twinning --$g6.5.5.$tDislocation mechanism of twinning --$g6.5.6.$tTwinning and fracture --$g6.6.$tStrengthening and hardening mechanisms --$g6.6.1.$tPoint defect hardening --$g6.6.2.$tWork hardening --$g6.6.3.$tDevelopment of preferred orientation --$g6.7.$tMacroscopic plasticity --$g6.7.1.$tTresca and von Mises criteria --$g6.7.2.$tEffective stress and strain --$g6.8.$tAnnealing --$g6.8.1.$tGeneral effects of annealing --$g6.8.2.$tRecovery --$g6.8.3.$tRecrystallization --$g6.8.4.$tGrain growth --$g6.8.5.$tAnnealing twins --$g6.8.6.$tRecrystallization textures --$g6.9.$tMetallic creep --$g6.9.1.$tTransient and steady-state creep --$g6.9.2.$tGrain boundary contribution to creep --$g6.9.3.$tTertiary creep and fracture --$g6.9.4.$tCreep-resistant alloy design --$g6.10.$tDeformation mechanism maps --$g6.11.$tMetallic fatigue --$g6.11.1.$tNature of fatigue failure --$g6.11.2.$tEngineering aspects of fatigue --$g6.11.3.$tStructural changes accompanying fatigue --$g6.11.4.$tCrack formation and fatigue failure --$g6.11.5.$tFatigue at elevated temperatures --$g7.$tMechanical properties II -- Strengthening and toughening --$g7.1.$tIntroduction --$g7.2.$tStrengthening of non-ferrous alloys by heat treatment --$g7.2.1.$tPrecipitation hardening of Al-Cu alloys --$g7.2.2.$tPrecipitation hardening of Al-Ag alloys --$g7.2.3.$tMechanisms of precipitation hardening --$g7.2.4.$tVacancies and precipitation --$g7.2.5.$tDuplex ageing --$g7.2.6.$tParticle coarsening --$g7.2.7.$tSpinodal decomposition --$g7.3.$tStrengthening of steels by heat treatment --$g7.3.1.$tTime-temperature-transformation diagrams --$g7.3.2.$tAustenite-pearlite transformation --$g7.3.3.$tAustenite-martensite transformation --$g7.3.4.$tAustenite-bainite transformation --$g7.3.5.$tTempering of martensite --$g7.3.6.$tThermomechanical treatments --$g7.4.$tFracture and toughness --$g7.4.1.$tGriffith microcrack criterion --$g7.4.2.$tFracture toughness --$g7.4.3.$tCleavage and the ductile-brittle transition --$g7.4.4.$tFactors affecting brittleness of steels --$g7.4.5.$tHydrogen embrittlement of steels --$g7.4.6.$tIntergranular fracture --$g7.4.7.$tDuctile failure --$g7.4.8.$tRupture --$g7.4.9.$tVoiding and fracture at elevated temperatures --$g7.4.10.$tFracture mechanism maps --$g7.4.11.$tCrack growth under fatigue conditions --$g7.5.$tAtomistic modeling of mechanical behavior --$g7.5.1.$tMultiscale modeling --$g7.5.2.$tAtomistic simulations of defects --$g8.$tAdvanced alloys --$g8.1.$tIntroduction --$g8.2.$tCommercial steels --$g8.2.1.$tPlain carbon steels --$g8.2.2.$tAlloy steels --$g8.2.3.$tMaraging steels --$g8.2.4.$tHigh-strength low-alloy (HSLA) steels --$g8.2.5.$tDual-phase (DP) steels --$g8.2.6.$tMechanically alloyed (MA) steels --$g8.2.7.$tDesignation of steels --$g8.3.$tCast irons --$g8.4.$tSuperalloys --$g8.4.1.$tBasic alloying features --$g8.4.2.$tNickel-based superalloy development --$g8.4.3.$tDispersion-hardened superalloys --$g8.5.$tTitanium alloys --$g8.5.1.$tBasic alloying and heat-treatment features --$g8.5.2.$tCommercial titanium alloys --$g8.5.3.$tProcessing of titanium alloys --$g8.6.$tStructural intermetallic compounds --$g8.6.1.$tGeneral properties of intermetallic compounds --$g8.6.2.$tNickel aluminides --$g8.6.3.$tTitanium aluminides --$g8.6.4.$tOther intermetallic compounds --$g8.7.$tAluminum alloys --$g8.7.1.$tDesignation of aluminum alloys --$g8.7.2.$tApplications of aluminum alloys --$g8.7.3.$tAluminum-lithium alloys --$g8.7.4.$tProcessing developments.
505 00 $g9.$tOxidation, corrosion and surface treatment --$g9.1.$tThe engineering importance of surfaces --$g9.2.$tMetallic corrosion --$g9.2.1.$tOxidation at high temperatures --$g9.2.2.$tAqueous corrosion --$g9.3.$tSurface engineering --$g9.3.1.$tThe coating and modification of surfaces --$g9.3.2.$tSurface coating by vapor deposition --$g9.3.3.$tSurface coating by particle bombardment --$g9.3.4.$tSurface modification with high-energy beams --$g9.4.$tThermal barrier coatings --$g9.5.$tDiamond-like carbon --$g9.6.$tDuplex surface engineering --$g10.$tNon-metallics I -- Ceramics, glass, glass-ceramics --$g10.1.$tIntroduction --$g10.2.$tSintering of ceramic powders --$g10.2.1.$tPowdering and shaping --$g10.2.2.$tSintering --$g10.3.$tSome engineering and commercial ceramics --$g10.3.1.$tAlumina --$g10.3.2.$tSilica --$g10.3.3.$tSilicates --$g10.3.4.$tPerovskites, titanates and spinels --$g10.3.5.$tSilicon carbide --$g10.3.6.$tSilicon nitride --$g10.3.7.$tSialons --$g10.3.8.$tZirconia --$g10.4.$tGlasses --$g10.4.1.$tStructure and characteristics --$g10.4.2.$tProcessing and properties --$g10.4.3.$tGlass-ceramics --$g10.5.$tCarbon --$g10.5.1.$tDiamond --$g10.5.2.$tGraphite --$g10.5.3.$tFullerenes and related nanostructures --$g10.6.$tStrength of ceramics and glasses --$g10.6.1.$tStrength measurement for brittle materials --$g10.6.2.$tStatistical nature and size dependence of strength --$g10.6.3.$tStress corrosion cracking of ceramics and glasses --$g10.7.$tA case study: thermal protection system in space shuttle orbiter --$g11.$tNon-metallics II -- Polymers, plastics, composites --$g11.1.$tPolymer molecules --$g11.2.$tMolecular weight --$g11.3.$tPolymer shape and structure --$g11.4.$tPolymer crystallinity --$g11.5.$tPolymer crystals --$g11.6.$tMechanical behavior --$g11.6.1.$tDeformation --$g11.6.2.$tViscoelasticity --$g11.6.3.$tFracture --$g11.7.$tPlastics and additives --$g11.8.$tPolymer processing --$g11.9.$tElectrical properties --$g11.10.$tComposites --$g11.10.1.$tParticulate composites --$g11.10.2.$tFiber-reinforced composites --$g11.10.3.$tFiber orientations --$g11.10.4.$tInfluence of fiber length --$g11.10.5.$tComposite fibers --$g11.10.6.$tPolymer-matrix composites (PMCs) --$g11.10.7.$tMetal-matrix composites (MMCs) --$g11.10.8.$tCeramic-matrix composites (CMCs) --$g12.$tCase examination of biomaterials, sports materials and nanomaterials --$g12.1.$tIntroduction --$g12.2.$tBiomaterials --$g12.2.1.$tIntroduction and bio-requirements --$g12.2.2.$tIntroduction to bone and tissue --$g12.2.3.$tCase consideration of replacement joints --$g12.2.4.$tBiomaterials for heart repair --$g12.2.5.$tReconstructive surgery --$g12.2.6.$tOphthalmics --$g12.2.7.$tDental materials --$g12.2.8.$tDrug delivery systems --$g12.3.$tSports materials --$g12.3.1.$tIntroduction --$g12.3.2.$tGolf equipment --$g12.3.3.$tTennis equipment --$g12.3.4.$tBicycles --$g12.3.5.$tSkiing materials --$g12.3.6.$tArchery --$g12.3.7.$tFencing foils --$g12.3.8.$tSports protection --$g12.4.$tMaterials for nanotechnology --$g12.4.1.$tIntroduction --$g12.4.2.$tNanoparticles --$g12.4.3.$tFullerenes and nanotubes --$g12.4.4.$tQuantum wells, wires and dots --$g12.4.5.$tBulk nanostructured solids --$g12.4.6.$tMechanical properties of small material volumes --$g12.4.7.$tBio-nanotechnology --$tNumerical answers to problems --$gAppendix 1.$tSI units --$gAppendix 2.$tConversion factors, constants and physical data.
546 $aEnglish.
650 0 $aPhysical metallurgy.
650 6 $aMétallurgie physique.
650 7 $aTECHNOLOGY & ENGINEERING$xMetallurgy.$2bisacsh
650 7 $aPhysical metallurgy.$2fast$0(OCoLC)fst01062712
650 7 $aMetallbearbeitung$2gnd
650 7 $aMetallkunde$2gnd
650 7 $aMetallurgie$2gnd
655 0 $aElectronic books.
655 4 $aElectronic books.
700 1 $aNgan, A. H. W.
700 1 $aSmallman, R. E.$tModern physical metallurgy.
776 08 $iPrint version:$aSmallman, R.E.$tPhysical metallurgy and advanced materials.$b7th ed.$dAmsterdam ; Boston : Butterworth Heinemann, 2007$z9780750669061$w(DLC) 2008270218$w(OCoLC)213375918
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio12572842$zACADEMIC - Metals & Metallurgy
852 8 $blweb$hEBOOKS