It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-027.mrc:163301763:13017
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-027.mrc:163301763:13017?format=raw

LEADER: 13017cam a2200637 i 4500
001 13494266
005 20220528224335.0
006 m o d
007 cr cnu---unuuu
008 150409s2015 enka ob 001 0 eng d
035 $a(OCoLC)ocn906944188
035 $a(NNC)13494266
040 $aCAMBR$beng$erda$epn$cCAMBR$dE7B$dYDXCP$dCUY$dEBLCP$dUIU$dOCLCQ$dCOO$dUAB$dKNOVL$dERL$dCEF$dNOC$dUKMGB$dWYU$dLVT$dTKN$dAU@$dUKAHL$dOCLCQ$dS9I$dERF$dS2H$dOCLCQ$dMM9$dRDF$dOCLCQ$dOCLCO$dK6U$dOCLCQ$dOCLCO
015 $aGBB532014$2bnb
016 7 $a017097574$2Uk
019 $a908059804$a935278186$a961005164$a961202718$a964302118$a964550644$a1002828472$a1003257493$a1011465601$a1012227380$a1066575531$a1117216059
020 $a9781316084168$q(electronic bk.)
020 $a1316084167$q(electronic bk.)
020 $a9781523113439$q(electronic bk.)
020 $a152311343X$q(electronic bk.)
020 $a9781316237113
020 $a1316237117
020 $z9781107085459
020 $z1107085454
035 $a(OCoLC)906944188$z(OCoLC)908059804$z(OCoLC)935278186$z(OCoLC)961005164$z(OCoLC)961202718$z(OCoLC)964302118$z(OCoLC)964550644$z(OCoLC)1002828472$z(OCoLC)1003257493$z(OCoLC)1011465601$z(OCoLC)1012227380$z(OCoLC)1066575531$z(OCoLC)1117216059
050 4 $aTK7871.15.S55$bC47 2015eb
082 04 $a621.36$223
084 $aTEC008080$2bisacsh
049 $aZCUA
100 1 $aChrostowski, Lukas,$eauthor.
245 10 $aSilicon photonics design /$cLukas Chrostowski, Michael Hochberg.
264 1 $aCambridge, United Kingdom :$bCambridge University Press,$c2015.
264 4 $c©2015
300 $a1 online resource (xix, 418 pages) :$billustrations (chiefly color)
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
504 $aIncludes bibliographical references and index.
588 0 $aPrint version record.
520 $aFrom design and simulation through to testing and fabrication, this hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs. In-depth discussion of real-world issues and fabrication challenges ensures that students are fully equipped for careers in industry. Step-by-step tutorials, straightforward examples, and illustrative source code fragments guide students through every aspect of the design process, providing a practical framework for developing and refining key skills. Offering industry-ready expertise, the text supports existing PDKs for CMOS UV-lithography foundry services (OpSIS, ePIXfab, imec, LETI, IME and CMC) and the development of new kits for proprietary processes and clean-room based research. Accompanied by additional online resources to support students, this is the perfect learning package for senior undergraduate and graduate students studying silicon photonics design, and academic and industrial researchers involved in the development and manufacture of new silicon photonics systems.
505 00 $g1.$tFabless silicon photonics --$g1.1.$tIntroduction --$g1.2.$tSilicon photonics: the next fabless semiconductor industry --$g1.2.1.$tHistorical context [--] Photonics --$g1.3.$tApplications --$g1.3.1.$tData communication --$g1.4.$tTechnical challenges and the state of the art --$g1.4.1.$tWaveguides and passive components --$g1.4.2.$tModulators --$g1.4.3.$tPhotodetectors --$g1.4.4.$tLight sources --$g1.4.5.$tApproaches to photonic[--]electronic integration --$tMonolithic integration --$tMulti-chip integration --$g1.5.$tOpportunities --$g1.5.1.$tDevice engineering --$g1.5.2.$tPhotonic system engineering --$tA transition from devices to systems --$g1.5.3.$tTools and support infrastructure --$tElectronic[--]photonic co-design --$tDFM and yield management --$g1.5.4.$tBasic science --$g1.5.5.$tProcess standardization and a history of MPW services --$tePIXfab and Europractice --$tIME --$tOpSIS --$tCMC Microsystems --$tOther organizations --$tReferences --$g2.$tModelling and design approaches --$g2.1.$tOptical waveguide mode solver --$g2.2.$tWave propagation --$g2.2.1.$t3D FDTD --$tFDTD modelling procedure --$g2.2.2.$t2D FDTD --$g2.2.3.$tAdditional propagation methods --$t2D FDTD with Effective Index Method --$tBeam Propagation Method (BPM) --$tEigenmode Expansion Method (EME) --$tCoupled Mode Theory (CMT) --$tTransfer Matrix Method (TMM) --$g2.2.4.$tPassive optical components --$g2.3.$tOptoelectronic models --$g2.4.$tMicrowave modelling --$g2.5.$tThermal modelling --$g2.6.$tPhotonic circuit modelling --$g2.7.$tPhysical layout --$g2.8.$tSoftware tools integration --$tReferences --$g3.$tOptical materials and waveguides --$g3.1.$tSilicon-on-insulator --$g3.1.1.$tSilicon --$tSilicon [--] wavelength dependence --$tSilicon [--] temperature dependence --$g3.1.2.$tSilicon dioxide --$g3.2.$tWaveguides --$g3.2.1.$tWaveguide design --$g3.2.2.$t1D slab waveguide [--] analytic method --$g3.2.3.$tNumerical modelling of waveguides --$g3.2.4.$t1D slab [--] numerical --$tConvergence tests --$tParameter sweep [--] slab thickness --$g3.2.5.$tEffective Index Method --$g3.2.6.$tEffective Index Method [--] analytic --$g3.2.7.$tWaveguide mode profiles [--] 2D calculations --$g3.2.8.$tWaveguide width [--] effective index --$g3.2.9.$tWavelength dependence --$g3.2.10.$tCompact models for waveguides --$g3.2.11.$tWaveguide loss --$g3.3.$tBent waveguides --$g3.3.1.$t3D FDTD bend simulations --$g3.3.2.$tEigenmode bend simulations --$g3.4.$tProblems --$g3.5.$tCode listings --$tReferences --$g4.$tFundamental building blocks --$g4.1.$tDirectional couplers --$g4.1.1.$tWaveguide mode solver approach --$tCoupler-gap dependence --$tCoupler-length dependence --$tWavelength dependence --$g4.1.2.$tPhase --$g4.1.3.$tExperimental data --$g4.1.4.$tFDTD modelling --$tFDTD versus mode solver --$g4.1.5.$tSensitivity to fabrication --$g4.1.6.$tStrip waveguide directional couplers --$g4.1.7.$tParasitic coupling --$tDelta beta coupling --$g4.2.$tY-branch --$g4.3.$tMach[--]Zehnder interferometer --$g4.4.$tRing resonators --$g4.4.1.$tOptical transfer function --$g4.4.2.$tRing resonator experimental results --$g4.5.$tWaveguide Bragg grating filters --$g4.5.1.$tTheory --$tGrating coupling coefficient --$g4.5.2.$tDesign --$tTransfer Matrix Method --$tGrating physical structure design --$tModelling gratings using FDTD --$g4.5.3.$tExperimental Bragg gratings --$tStrip waveguide gratings --$tRib waveguide gratings --$tGrating period --$g4.5.4.$tEmpirical models for fabricated gratings --$tComputation lithography models --$tAdditional fabrication considerations --$g4.5.5.$tSpiral Bragg gratings --$tThermal sensitivity --$g4.5.6.$tPhase-shifted Bragg gratings --$g4.5.7.$tMulti-period Bragg gratings --$g4.5.8.$tGrating-assisted contra-directional couplers --$g4.6.$tProblems --$g4.7.$tCode listings --$tReferences --$g5.$tOptical I/O --$g5.1.$tThe challenge of optical coupling to silicon photonic chips --$g5.2.$tGrating coupler --$g5.2.1.$tPerformance --$g5.2.2.$tTheory --$g5.2.3.$tDesign methodology --$tAnalytic grating coupler design --$tDesign using 2D FDTD simulations --$tResults --$tDesign parameters --$tCladding and buried oxide --$tCompact design [--] focusing --$tMask layout --$t3D simulation --$g5.2.4.$tExperimental results --$g5.3.$tEdge coupler --$g5.3.1.$tNano-taper edge coupler --$tMode overlap calculation approach --$tFDTD approach --$g5.3.2.$tEdge coupler with overlay waveguide --$tEigenmode expansion method --$g5.4.$tPolarization --$g5.5.$tProblems --$g5.6.$tCode listings --$tReferences --$g6.$tModulators --$g6.1.$tPlasma dispersion effect --$g6.1.1.$tSilicon, carrier density dependence --$g6.2.$tpn-Junction phase shifter --$g6.2.1.$tpn-Junction carrier distribution --$g6.2.2.$tOptical phase response --$g6.2.3.$tSmall-signal response --$g6.2.4.$tNumerical TCAD modelling of pn-junctions --$g6.3.$tMicro-ring modulators --$g6.3.1.$tRing tuneability --$g6.3.2.$tSmall-signal modulation response --$g6.3.3.$tRing modulator design --$g6.4.$tForward-biased PIN junction --$g6.4.1.$tVariable optical attenuator --$g6.5.$tActive tuning --$g6.5.1.$tPIN phase shifter --$g6.5.2.$tThermal phase shifter --$g6.6.$tThermo-optic switch --$g6.7.$tProblems --$g6.8.$tCode listings --$tReferences --$g7.$tDetectors --$g7.1.$tPerformance parameters --$g7.1.1.$tResponsivity --$g7.1.2.$tBandwidth --$tTransit time --$tRC response --$tDark current --$g7.2.$tFabrication --$g7.3.$tTypes of detectors --$g7.3.1.$tPhotoconductive detector --$g7.3.2.$tPIN detector --$g7.3.3.$tAvalanche detector --$tCharge region design --$g7.4.$tDesign considerations --$g7.4.1.$tPIN junction orientation --$g7.4.2.$tDetector geometry --$tDetector length --$tDetector width --$tDetector height --$g7.4.3.$tContacts --$tContact material --$tContact geometry --$g7.4.4.$tExternal load on the detector --$g7.5.$tDetector modelling --$g7.5.1.$t3D FDTD optical simulations --$g7.5.2.$tElectronic simulations --$g7.6.$tProblems --$g7.7.$tCode listings --$tReferences --$g8.$tLasers --$g8.1.$tExternal lasers --$g8.2.$tLaser modelling --$g8.3.$tCo-packaging --$g8.3.1.$tPre-made laser --$g8.3.2.$tExternal cavity lasers --$g8.3.3.$tEtched-pit embedded epitaxy --$g8.4.$tHybrid silicon lasers --$g8.5.$tMonolithic lasers --$g8.5.1.$tIll[--]V Monolithic growth --$g8.5.2.$tGermanium lasers --$g8.6.$tAlternative light sources --$g8.7.$tProblem --$tReferences --$g9.$tPhotonic circuit modelling --$g9.1.$tNeed for photonic circuit modelling --$g9.2.$tComponents for system design --$g9.3.$tCompact models --$g9.3.1.$tEmpirical or equivalent circuit models --$g9.3.2.$tS-parameters --$g9.4.$tDirectional coupler [--] compact model --$g9.4.1.$tFDTD simulations --$g9.4.2.$tFDTD S-parameters --$tDirectional coupler S-parameters --$g9.4.3.$tEmpirical model [--] polynomial --$g9.4.4.$tS-parameter model passivity --$tPassivity assessment --$tPassivity enforcement --$g9.5.$tRing modulator [--] circuit model --$g9.6.$tGrating coupler [--] S-parameters --$g9.6.1.$tGrating coupler circuits --$g9.7.$tCode listings --$tReferences --$g10.$tTools and techniques --$g10.1.$tProcess design kit (PDK) --$g10.1.1.$tFabrication process parameters --$tSilicon thickness and etch --$tGDS layer map --$tDesign rules --$g10.1.2.$tLibrary --$g10.1.3.$tSchematic capture --$g10.1.4.$tCircuit export --$g10.1.5.$tSchematic-driven layout --$g10.1.6.$tDesign rule checking --$g10.1.7.$tLayout versus schematic --$g10.2.$tMask layout --$g10.2.1.$tComponents --$g10.2.2.$tLayout for electrical and optical testing --$g10.2.3.$tApproaches for fast GDS layout --$g10.2.4.$tApproaches for space-efficient GDS layout --$tReferences --$g11.$tFabrication --$g11.1.$tFabrication non-uniformity --$g11.1.1.$tLithography process contours --$g11.1.2.$tCorner analysis --$g11.1.3.$tOn-chip non-uniformity, experimental results --$tRing resonators --$tGrating couplers --$g11.2.$tProblems --$tReferences --$g12.$tTesting and packaging --$g12.1.$tElectrical and optical interfacing --$g12.1.1.$tOptical interfaces --$tGrating couplers --$tEdge couplers --$tIndividual fibres --$tSpot-size converter --$tFibre array --$tFree-space coupling --$tFibre taper coupling --$g12.1.2.$tElectrical interfaces --$tBond pads --$tProbing --$tWire bonding --$tFlip-chip bonding --$g12.2.$tAutomated optical probe stations --$g12.2.1.$tParts --$tSample stage --$tFibre array probe --$tElectrical probes --$tMicroscopes --$g12.2.2.$tSoftware --$g12.2.3.$tOperation --$tLoading and aligning a chip/wafer --$tAligning the fibre array --$tChip registration --$tAutomated device testing --$g12.2.4.$tOptical test equipment --$g12.3.$tDesign for test --$g12.3.1.$tOptical power budgets --$g12.3.2.$tLayout considerations --$g12.3.3.$tDesign review and checklist --$tReferences --$g13.$tSilicon photonic system example --$g13.1.$tWavelength division multiplexed transmitter --$g13.1.1.$tRing-based WDM transmitter architectures --$g13.1.2.$tCommon-bus WDM transmitter --$g13.1.3.$tMod-Mux WDM transmitter --$g13.1.4.$tConclusion --$tReferences.
650 0 $aSilicon$xOptical properties.
650 0 $aPhotonics.
650 0 $aMicrowave integrated circuits$xDesign and construction.
650 6 $aSilicium$xPropriétés optiques.
650 6 $aPhotonique.
650 7 $aTECHNOLOGY & ENGINEERING$xElectronics$xOptoelectronics.$2bisacsh
650 7 $aMicrowave integrated circuits$xDesign and construction.$2fast$0(OCoLC)fst01020222
650 7 $aPhotonics.$2fast$0(OCoLC)fst01062073
650 7 $aSilicon$xOptical properties.$2fast$0(OCoLC)fst01118645
655 4 $aElectronic books.
700 1 $aHochberg, Michael E.,$eauthor.
776 08 $iPrint version:$aChrostowski, Lukas.$tSilicon photonics design$z9781107085459$w(DLC) 2014034057$w(OCoLC)890971587
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio13494266.001$zACADEMIC - Electronics & Semiconductors
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio13494266.002$zACADEMIC - Sustainable Energy & Development
852 8 $blweb$hEBOOKS