Record ID | marc_columbia/Columbia-extract-20221130-027.mrc:80763188:8045 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-027.mrc:80763188:8045?format=raw |
LEADER: 08045cam a2200925Ia 4500
001 13215255
005 20220528224314.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 111201s1984 njua ob 001 0 eng d
035 $a(OCoLC)ocn765641472
035 $a(NNC)13215255
040 $aOCLCE$beng$epn$cOCLCE$dOCLCQ$dOCLCO$dSINTU$dVLB$dVALIL$dOCLCQ$dOCLCF$dEBLCP$dDEBSZ$dZCU$dOCLCQ$dMERUC$dOCLCQ$dOCLCO$dOCLCQ$dOCLCA$dCEF$dRRP$dOCLCQ$dAU@$dOCLCO$dOCLCQ$dOCLCO$dOCLCQ$dERF$dOCLCQ$dBRF$dMM9$dOCLCQ$dUAB$dOCLCO
019 $a763430917$a868115868$a898421293$a977370899$a1229060969
020 $a9780486137728$q(electronic bk.)
020 $a0486137724$q(electronic bk.)
020 $z013004069X
020 $z9780130040695
020 $z9781628700725
020 $z1628700726
020 $z9780486469324
020 $z0486469328
035 $a(OCoLC)765641472$z(OCoLC)763430917$z(OCoLC)868115868$z(OCoLC)898421293$z(OCoLC)977370899$z(OCoLC)1229060969
042 $adlr
050 4 $aQA402$b.G658 1984
082 04 $a003$219
084 $a53.71$2bcl
049 $aZCUA
100 1 $aGoodwin, Graham C.$q(Graham Clifford),$d1945-
245 10 $aAdaptive filtering prediction and control /$cGraham C. Goodwin and Kwai Sang Sin.
260 $aEnglewood Cliffs, N.J. :$bPrentice-Hall,$c©1984.
300 $a1 online resource (xii, 540 pages) :$billustrations
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
490 1 $aPrentice-Hall information and system sciences series
504 $aIncludes bibliographical references (pages 516-534) and index.
506 $3Use copy$fRestrictions unspecified$2star$5MiAaHDL
533 $aElectronic reproduction.$b[Place of publication not identified] :$cHathiTrust Digital Library,$d2011.$5MiAaHDL
538 $aMaster and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.$uhttp://purl.oclc.org/DLF/benchrepro0212$5MiAaHDL
583 1 $adigitized$c2011$hHathiTrust Digital Library$lcommitted to preserve$2pda$5MiAaHDL
520 $aThis unified survey of the theory of adaptive filtering, prediction, and control focuses on linear discrete-time systems and explores the natural extensions to nonlinear systems. In keeping with the importance of computers to practical applications, the authors emphasize discrete-time systems. Their approach summarizes the theoretical and practical aspects of a large class of adaptive algorithms. Ideal for advanced undergraduate and graduate classes, this treatment consists of two parts. The first section concerns deterministic systems, covering models, parameter estimation, and adaptive prediction and control. The second part examines stochastic systems, exploring optimal filtering and prediction, parameter estimation, adaptive filtering and prediction, and adaptive control. Extensive appendices offer a summary of relevant background material, making this volume largely self-contained. Readers will find that these theories, formulas, and applications are related to a variety of fields, including biotechnology, aerospace engineering, computer sciences, and electrical engineering.
588 0 $aPrint version record.
505 0 $aCover; Title Page; Copyright Page; Table of Contents; Preface; 1 Introduction To Adaptive Techniques; 1.1 Filtering; 1.2 Prediction; 1.3 Control; Part I: Deterministic Systems; 2 Models for Deterministic Dynamical Systems; 2.1 Introduction; 2.2 State-Space Models; 2.2.1 General; 2.2.2 Controllable State-Space Models; 2.2.3 Observable State-Space Models; 2.2.4 Minimal State-Space Models; 2.3 Difference Operator Representations; 2.3.1 General; 2.3.2 Right Difference Operator Representations; 2.3.3 Left Difference Operator Representations; 2.3.4 Deterministic Autoregressive Moving-Average Models.
505 8 $a2.3.5 Irreducible Difference Operator Representations2.4 Models for Bilinear Systems; 3 Parameter Estimation for Deterministic Systems; 3.1 Introduction; 3.2 On-Line Estimation Schemes; 3.3 Equation Error Methods for Deterministic Systems; 3.4 Parameter Convergence; 3.4.1 The Orthogonalized Projection Algorithm; 3.4.2 The Least-Squares Algorithm; 3.4.3 The Projection Algorithm; 3.4.4 Persistent Excitation; 3.5 Output Error Methods; 3.6 Parameter Estimation with Bounded Noise; 3.7 Constrained Parameter Estimation; 3.8 Parameter Estimation for Multi-output Systems; 3.9 Concluding Remarks.
505 8 $a4 Deterministic Adaptive Prediction4.1 Introduction; 4.2 Predictor Structures; 4.2.1 Prediction with Known Models; 4.2.2 Restricted Complexity Predictors; 4.3 Adaptive Prediction; 4.3.1 Direct Adaptive Prediction; 4.3.2 Indirect Adaptive Prediction; 4.4 Concluding Remarks; 5 Control of Linear Deterministic Systems; 5.1 Introduction; 5.2 Minimum Prediction Error Controllers; 5.2.1 One-Step-Ahead Control (The SISO Case); 5.2.2 Model Reference Control (The SISO Case); 5.2.3 One-Step-Ahead Design for Multi-input Multi-output Systems; 5.2.4 Robustness Considerations.
505 8 $a5.3 Closed-Loop Pole Assignment5.3.1 Introduction; 5.3.2 The Pole Assignment Algorithm (Difference Operator Formulation); 5.3.3 Rapprochement with State- Variable Feedback; 5.3.4 Rapprochement with Minimum Prediction Error Control; 5.3.5 The Internal Model Principle; 5.3.6 Some Design Considerations; 5.4 An Illustrative Example; 6 Adaptive Control Of Linear Deterministic Systems; 6.1 Introduction; 6.2 The Key Technical Lemma; 6.3 Minimum Prediction Error Adaptive Controllers (Direct Approach); 6.3.1 One-Step-Ahead Adaptive Control (The SISO Case); 6.3.2 Model Reference Adaptive Control.
505 8 $a6.3.3 One-Step-Ahead Adaptive Controllers for Multi-input Multi-output Systems6.4 Minimum Prediction Error Adaptive Controllers (Indirect Approach); 6.5 Adaptive Algorithms for Closed-Loop Pole Assignment; 6.6 Adaptive Control of Nonlinear Systems; 6.7 Adaptive Control of Time-Varying Systems; 6.8 Some Implementation Considerations; Part II: Stochastic Systems; 7 Optimal Filtering and Prediction; 7.1 Introduction; 7.2 Stochastic State-Space Models; 7.3 Linear Optimal Filtering and Prediction; 7.3.1 The Kalman Filter; 7.3.2 Fixed-Lag Smoothing; 7.3.3 Fixed-Point Smoothing.
650 0 $aDiscrete-time systems.
650 0 $aFilters (Mathematics)
650 0 $aPrediction theory.
650 0 $aControl theory.
650 6 $aSystèmes échantillonnés.
650 6 $aFiltres (Mathématiques)
650 6 $aThéorie de la prévision.
650 6 $aThéorie de la commande.
650 7 $aTECHNOLOGY & ENGINEERING$xElectrical.$2bisacsh
650 7 $aControl theory.$2fast$0(OCoLC)fst00877085
650 7 $aDiscrete-time systems.$2fast$0(OCoLC)fst00894973
650 7 $aFilters (Mathematics)$2fast$0(OCoLC)fst00924327
650 7 $aPrediction theory.$2fast$0(OCoLC)fst01075037
650 7 $aAdaptives System$2gnd
650 7 $aKontrolltheorie$2gnd
650 7 $aStochastisches System$2gnd
650 17 $aTijdreeksen.$2gtt
650 17 $aVoorspellingen.$2gtt
650 17 $aStochastische modellen.$2gtt
650 17 $aDeterministische modellen.$2gtt
650 7 $aSystèmes échantillonnés.$2ram
650 7 $aFiltres (mathématiques)$2ram
650 7 $aCommande, Théorie de la.$2ram
650 7 $aPrévision, Théorie de la.$2ram
653 $aComplex systems$aAdaptive control systems
655 4 $aElectronic books.
700 1 $aSin, Kwai Sang,$d1952-
776 08 $iPrint version:$aGoodwin, Graham C. (Graham Clifford), 1945-$tAdaptive filtering prediction and control.$dEnglewood Cliffs, N.J. : Prentice-Hall, ©1984$z013004069X$w(DLC) 83023023$w(OCoLC)10183440
830 0 $aPrentice-Hall information and system sciences series.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio13215255$zACADEMIC - Electronics & Semiconductors
852 8 $blweb$hEBOOKS