Record ID | marc_columbia/Columbia-extract-20221130-030.mrc:101000351:6371 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-030.mrc:101000351:6371?format=raw |
LEADER: 06371cam a2200901Mi 4500
001 14740976
005 20220528233404.0
006 m o d
007 cr cn|||||||||
008 180413s2018 flua ob 001 0 eng d
035 $a(OCoLC)on1031305765
035 $a(NNC)14740976
040 $aCRCPR$beng$erda$epn$cCRCPR$dOCLCO$dOCLCF$dEBLCP$dCUS$dMERER$dCOO$dCNCGM$dOCLCQ$dEZ9$dU3W$dNLE$dYDX$dN$T$dERL$dOCLCQ$dUKMGB$dWYU$dOCLCQ$dOCLCO$dTYFRS$dOCL$dOCLCQ$dAU@$dS2H$dOCLCO$dUKAHL$dOCLCQ$dOCLCO
016 7 $a018941155$2Uk
019 $a1033783253$a1034567013$a1034656276$a1034760959$a1034887477$a1035414989$a1048766154$a1052417421$a1063626250$a1066520651
020 $a9780429504815$q(e-book)
020 $a0429504810
020 $a9780429998034$q(e-book ;$qPDF)
020 $a0429998031
020 $a9780429998010
020 $a0429998015
020 $a1138596213
020 $a9781138596214
020 $a9781138586109
020 $a1138586102
020 $a0429998023
020 $a9780429998027
020 $z9781138596214
024 7 $a10.1201/9780429504815$2doi
035 $a(OCoLC)1031305765$z(OCoLC)1033783253$z(OCoLC)1034567013$z(OCoLC)1034656276$z(OCoLC)1034760959$z(OCoLC)1034887477$z(OCoLC)1035414989$z(OCoLC)1048766154$z(OCoLC)1052417421$z(OCoLC)1063626250$z(OCoLC)1066520651
037 $a9780429998027$bIngram Content Group
050 4 $aQA37.3$b.S755 2018
072 7 $aMAT000000$2bisacsh
072 7 $aMAT025000$2bisacsh
082 14 $aSCMA50
082 04 $aSCMA20
082 04 $aSCMA30
082 04 $aWB021
082 04 $aWB057
082 04 $aWB075
049 $aZCUA
100 1 $aStillwell, John,$eauthor.
245 10 $aYearning for the Impossible :$bthe Surprising Truths of Mathematics, Second Edition /$cJohn Stillwell.
250 $aSecond edition.
264 1 $aBoca Raton, FL :$bCRC Press,$c2018.
300 $a1 online resource :$btext file, PDF
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
520 2 $a"Yearning for the Impossible: The Surprising Truth of Mathematics, Second Edition explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress. The author puts these creations into a broader context involving related "impossibilities" from art, literature, philosophy, and physics. This new edition contains many new exercises and commentaries, clearly discussing a wide range of challenging subjects."--Provided by publisher.
505 0 $aCover; Half title; Title; Copyright; Dedication; Preface to the Second Edition; Preface; Contents; Chapter 1 The Irrational; 1.1 The Pythagorean Dream; 1.2 The Pythagorean Theorem; 1.3 Irrational Triangles; 1.4 The Pythagorean Nightmare; 1.5 Explaining the Irrational; 1.6 The Continued Fraction for 2; 1.7 Equal Temperament; Chapter 2 The Imaginary; 2.1 Negative Numbers; 2.2 Imaginary Numbers; 2.3 Solving Cubic Equations; 2.4 Real Solutions via Imaginary Numbers; 2.5 WhereWere Imaginary Numbers before 1572?; 2.6 Geometry ofMultiplication; 2.7 Complex Numbers GiveMore thanWe Asked for.
505 8 $a2.8 Why Call Them "Complex" Numbers?Chapter 3 The Horizon; 3.1 Parallel Lines; 3.2 Coordinates; 3.3 Parallel Lines and Vision; 3.4 Drawing withoutMeasurement; 3.5 The Theorems of Pappus and Desargues; 3.6 The Little Desargues Theorem; 3.7 What Are the Laws of Algebra?; 3.8 Projective Addition andMultiplication; Chapter 4 The Infinitesimal; 4.1 Length and Area; 4.2 Volume; 4.3 Volume of a Tetrahedron; 4.4 The Circle; 4.5 The Parabola; 4.6 The Slopes of Other Curves; 4.7 Slope and Area; 4.8 The Value of ơ; 4.9 Ghosts of Departed Quantities; Chapter 5 Curved Space.
505 8 $a5.1 Flat Space andMedieval Space5.2 The 2-Sphere and the 3-Sphere; 5.3 Flat Surfaces and the Parallel Axiom; 5.4 The Sphere and the Parallel Axiom; 5.5 Non-Euclidean Geometry; 5.6 Negative Curvature; 5.7 The Hyperbolic Plane; 5.8 Hyperbolic Space; 5.9 Mathematical Space and Actual Space; Chapter 6 The Fourth Dimension; 6.1 Arithmetic of Pairs; 6.2 Searching for an Arithmetic of Triples; 6.3 Why n-tuples Are Unlike Numbers when n ı 3; 6.4 Quaternions; 6.5 The Four-Square Theorem; 6.6 Quaternions and Space Rotations; 6.7 Symmetry in Three Dimensions; 6.8 Tetrahedral Symmetry and the 24-Cell.
505 8 $a6.9 The Regular PolytopesChapter 7 The Ideal; 7.1 Discovery and Invention; 7.2 Division with Remainder; 7.3 The Euclidean Algorithm; 7.4 Unique Prime Factorization; 7.5 Gaussian Integers; 7.6 Gaussian Primes; 7.7 Rational Slopes and Rational Angles; 7.8 Unique Prime Factorization Lost; 7.9 Ideals-Unique Prime Factorization Regained; Chapter 8 Periodic Space; 8.1 The Impossible Tribar; 8.2 The Cylinder and the Plane; 8.3 Where theWild Things Are; 8.4 PeriodicWorlds; 8.5 Periodicity and Topology; 8.6 A Brief History of Periodicity; 8.7 Non-Euclidean Periodicity; Chapter 9 The Infinite.
505 8 $a9.1 Finite and Infinite9.2 Potential and Actual Infinity; 9.3 The Uncountable; 9.4 The Diagonal Argument; 9.5 The Transcendental; 9.6 Yearning for Completeness; Epilogue; References; Index.
504 $aIncludes bibliographical references and index.
650 0 $aMathematics$xStudy and teaching.
650 0 $aMathematics.
650 0 $aMathematics$xPhilosophy.
650 0 $aNumber theory.
650 2 $aMathematics
650 6 $aMathématiques$xÉtude et enseignement.
650 6 $aMathématiques.
650 6 $aMathématiques$xPhilosophie.
650 6 $aThéorie des nombres.
650 7 $aMATHEMATICS$xEssays.$2bisacsh
650 7 $aMATHEMATICS$xPre-Calculus.$2bisacsh
650 7 $aMATHEMATICS$xReference.$2bisacsh
650 7 $aMathematics.$2fast$0(OCoLC)fst01012163
650 7 $aMathematics$xPhilosophy.$2fast$0(OCoLC)fst01012213
650 7 $aMathematics$xStudy and teaching.$2fast$0(OCoLC)fst01012236
650 7 $aNumber theory.$2fast$0(OCoLC)fst01041214
655 0 $aElectronic books.
655 4 $aElectronic books.
655 7 $aHistory.$2fast$0(OCoLC)fst01411628
776 08 $z9780429504815$z9781138586109
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio14740976$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS