Record ID | marc_columbia/Columbia-extract-20221130-030.mrc:129965811:7133 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-030.mrc:129965811:7133?format=raw |
LEADER: 07133cam a2200901 i 4500
001 14755498
005 20220703234306.0
006 m o d
007 cr |||||||||||
008 190618s2019 flua ob 000 0 eng
010 $a 2020693736
035 $a(OCoLC)on1104841012
035 $a(NNC)14755498
040 $aDLC$beng$erda$cDLC$dN$T$dYDX$dTYFRS$dEBLCP$dUKMGB$dUKAHL$dOCLCO
015 $aGBB9B3670$2bnb
016 7 $a019445615$2Uk
019 $a1289841838
020 $a9780429440557$q(ebook)
020 $a0429440553
020 $a9780429803369$qebook
020 $a0429803362
020 $z9781138340565$q(hardback ;$qalk. paper)
020 $a9780429803376$q(electronic bk. ;$qPDF)
020 $a0429803370$q(electronic bk. ;$qPDF)
020 $a9780429803352$q(electronic bk. ;$qMobipocket)
020 $a0429803354$q(electronic bk. ;$qMobipocket)
020 $z1138340561
024 8 $a10.1201/9780429440557$2doi
035 $a(OCoLC)1104841012$z(OCoLC)1289841838
037 $a9780429440557$bTaylor & Francis
050 00 $aQH442
072 7 $aSCI$x007000$2bisacsh
072 7 $aMAT$x029000$2bisacsh
072 7 $aSCI$x008000$2bisacsh
072 7 $aPS$2bicssc
082 00 $a572/.33$223
049 $aZCUA
100 1 $aGonzález, Juan R.$c(Bioinformatics researcher),$eauthor.
245 10 $aOmic association studies with R and Bioconductor /$cJuan R. González, Alejandro Cáceres.
264 1 $aBoca Raton :$bCRC Press, Taylor and Francis Group,$c[2019]
300 $a1 online resource
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
504 $aIncludes bibliographical references (pages 353-370).
588 $aDescription based on print version record.
505 0 $aCover; Half Title; Title Page; Copyright Page; Dedication; Contents; Preface; 1 Introduction; 1.1 Book overview; 1.2 Overview of omic data; 1.2.1 Genomic data; 1.2.1.1 Genomic SNP data; 1.2.1.2 SNP arrays; 1.2.1.3 Sequencing methods; 1.2.2 Genomic data for other structural variants; 1.2.3 Transcriptomic data; 1.2.3.1 Microarrays; 1.2.3.2 RNA-seq; 1.2.4 Epigenomic data; 1.2.5 Exposomic data; 1.3 Association studies; 1.3.1 Genome-wide association studies; 1.3.2 Whole transcriptome pro ling; 1.3.3 Epigenome-wide association studies; 1.3.4 Exposome-wide association studies
505 8 $a1.4 Publicly available resources1.4.1 dbGaP; 1.4.2 EGA; 1.4.3 GEO; 1.4.4 1000 Genomes; 1.4.5 GTEx; 1.4.6 TCGA; 1.4.7 Others; 1.5 Bioconductor; 1.5.1 R; 1.5.2 Omic data in Bioconductor; 1.6 Book's outline; 2 Case examples; 2.1 Chapter overview; 2.2 Reproducibility: The case for public data repositories; 2.3 Case 1: dbGaP; 2.4 Case 2: GEO; 2.5 Case 3: GTEx; 2.6 Case 4: TCGA; 2.7 Case 5: NHANES; 3 Dealing with omic data in Bioconductor; 3.1 Chapter overview; 3.2 snpMatrix; 3.3 ExpressionSet; 3.4 SummarizedExperiment; 3.5 GRanges; 3.6 RangedSummarizedExperiment; 3.7 ExposomeSet
505 8 $a3.8 MultiAssayExperiment3.9 MultiDataSet; 4 Genetic association studies; 4.1 Chapter overview; 4.2 Genetic association studies; 4.2.1 Analysis packages; 4.2.2 Association tests; 4.2.3 Single SNP analysis; 4.2.4 Hardy{Weinberg equilibrium; 4.2.5 SNP association analysis; 4.2.6 Gene environment and gene gene interactions; 4.3 Haplotype analysis; 4.3.1 Linkage disequilibrium heatmap plots; 4.3.2 Haplotype estimation; 4.3.3 Haplotype association; 4.3.4 Sliding window approach; 4.4 Genetic score; 4.5 Genome-wide association studies; 4.5.1 Quality control of SNPs
505 8 $a4.5.2 Quality control of individuals4.5.3 Population ancestry; 4.5.4 Genome-wide association analysis; 4.5.5 Adjusting for population strati cation; 4.6 Post-GWAS visualization and interpretation; 4.6.1 Genome-wide associations for imputed data; 5 Genomic variant studies; 5.1 Chapter overview; 5.2 Copy number variants; 5.2.1 CNV calling; 5.3 Single CNV association; 5.3.1 Inferring copy number status from signal data; 5.3.2 Measuring uncertainty of CNV calling; 5.3.3 Assessing the association between CNVs and traits; 5.3.3.1 Modeling association; 5.3.3.2 Global test of associations
505 8 $a5.3.4 Whole genome CNV analysis5.4 Genetic mosaicisms; 5.4.1 Calling genetic mosaicisms; 5.4.2 Calling the loss of chromosome Y; 5.5 Polymorphic inversions; 5.5.1 Inversion detection; 5.5.2 Inversion calling; 5.5.3 Inversion association; 6 Addressing batch e ects; 6.1 Chapter overview; 6.2 SVA; 6.3 ComBat; 7 Transcriptomic studies; 7.1 Chapter overview; 7.2 Microarray data; 7.2.1 Normalization; 7.2.2 Filter; 7.2.3 Di erential expression; 7.3 Next generation sequencing data; 7.3.1 Normalization; 7.3.2 Gene ltering; 7.3.3 Di erential expression; 8 Epigenomic studies; 8.1 Chapter overview
520 $aAfter the great expansion of genome-wide association studies, their scientific methodology and, notably, their data analysis has matured in recent years, and they are a keystone in large epidemiological studies. Newcomers to the field are confronted with a wealth of data, resources and methods. This book presents current methods to perform informative analyses using real and illustrative data with established bioinformatics tools and guides the reader through the use of publicly available data. Includes clear, readable programming codes for readers to reproduce and adapt to their own data. Emphasises extracting biologically meaningful associations between traits of interest and genomic, transcriptomic and epigenomic data Uses up-to-date methods to exploit omic data Presents methods through specific examples and computing sessions Supplemented by a website, including code, datasets, and solutions
650 0 $aMolecular genetics.
650 0 $aMolecular genetics$xData processing.
650 0 $aPhenotype.
650 0 $aGene expression.
650 0 $aDNA.
650 0 $aR (Computer program language)
650 6 $aGénétique moléculaire.
650 6 $aGénétique moléculaire$xInformatique.
650 6 $aPhénotypes.
650 6 $aExpression génique.
650 6 $aADN.
650 6 $aR (Langage de programmation)
650 7 $aSCIENCE$xLife Sciences$xBiochemistry.$2bisacsh
650 7 $aMATHEMATICS$xProbability & Statistics$xGeneral.$2bisacsh
650 7 $aSCIENCE$xLife Sciences$xBiology$xGeneral.$2bisacsh
650 7 $aDNA.$2fast$0(OCoLC)fst00886555
650 7 $aGene expression.$2fast$0(OCoLC)fst00939613
650 7 $aMolecular genetics.$2fast$0(OCoLC)fst01024797
650 7 $aMolecular genetics$xData processing.$2fast$0(OCoLC)fst01024800
650 7 $aPhenotype.$2fast$0(OCoLC)fst01060531
650 7 $aR (Computer program language)$2fast$0(OCoLC)fst01086207
655 4 $aElectronic books.
700 1 $aCáceres, Alejandro$c(Bioinformatics researcher),$eauthor.
776 08 $iPrint version:$tOmic association studies with R and Bioconductor$dBoca Raton : CRC Press, Taylor & Francis Group, [2019]$z9781138340565$w(DLC) 2018060985
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio14755498$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS