Record ID | marc_columbia/Columbia-extract-20221130-030.mrc:5007042:4368 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-030.mrc:5007042:4368?format=raw |
LEADER: 04368cam a2200565 i 4500
001 14565836
005 20200127111611.0
008 190405t20192019riua b 001 0 eng
010 $a 2019016171
035 $a(OCoLC)on1097461386
040 $aDLC$beng$erda$cDLC$dOCLCF$dOCLCO$dYDX$dOBE$dEMU$dBUF$dYDX$dKSU$dMTG$dUKMGB
015 $aGBB9J3976$2bnb
016 7 $a019627318$2Uk
020 $a9781470451332$qhardcover$qalkaline paper
020 $a1470451336$qhardcover$qalkaline paper
035 $a(OCoLC)1097461386
042 $apcc
050 00 $aQA36$b.W55 2019
050 4 $aQA326$b.W56 2019
082 00 $a512/.556$bW7224t$223
084 $a46L55$a46L05$a46L35$a46L08$a22D25$2msc
049 $aZCUA
100 1 $aWilliams, Dana P.,$d1952-$eauthor.
245 12 $aA tool kit for groupoid C*-algebras /$cDana P. Williams.
264 1 $aProvidence, Rhode Island :$bAmerican Mathematical Society,$c[2019]
264 4 $c©2019
300 $axv, 398 pages :$billustrations ;$c27 cm.
336 $atext$btxt$2rdacontent
336 $astill image$bsti$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aMathematical surveys and monographs ;$vVolume 241
504 $aIncludes bibliographical references (page 387-392) and indexes.
505 0 $aFrom groupoid to algebra -- Groupoid actions and equivalence -- Measure theory -- Proof of the equivalence theorem -- Basic representation theory -- The existence and uniqueness of Haar systems -- Unitary representations -- Renault's Disintegration Theorem -- Amenability for groupoids -- Measurewise amenability for groupoids -- Comments on simplicity -- Duals and topological vector spaces -- Appendix A. Duals and Topological Vector Spaces -- Appendix B. Remarks on Blanchard's Theorem -- Appendix C. The Inductive Limit Topology -- Appendix D. Ramsay Almost Everywhere -- Answers to Some of the Exercises.
520 $aThe construction of a C*-algebra from a locally compact groupoid is an important generalization of the group C*-algebra construction and of the transformation group C*-algebra construction. Since their introduction in 1980, groupoid C*-algebras have been intensively studied with diverse applications, including graph algebras, classification theory, variations on the Baum-Connes conjecture, and noncommutative geometry. This book provides a detailed introduction to this vast subject and is suitable for graduate students or any researcher who wants to use groupoid C*-algebras in their work. The main focus is to equip the reader with modern versions of the basic technical tools used in the subject, which will allow the reader to understand fundamental results and make contributions to various areas in the subject. Thus, in addition to covering the basic properties and construction of groupoid C*-algebras, the focus is to give a modern treatment of some of the major developments in the subject in recent years, including the Equivalence Theorem and the Disintegration Theorem. Also covered are the complicated subjects of amenability of groupoids and simplicity results.
650 0 $aOperator algebras.
650 0 $aGroupoids.
650 0 $aGroup theory.
650 0 $aC*-algebras.
650 7 $aC*-algebras.$2fast$0(OCoLC)fst00843285
650 7 $aGroup theory.$2fast$0(OCoLC)fst00948521
650 7 $aGroupoids.$2fast$0(OCoLC)fst00948548
650 7 $aOperator algebras.$2fast$0(OCoLC)fst01046408
650 7 $aFunctional analysis -- Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) -- Noncommutative dynamical systems.$2msc
650 7 $aFunctional analysis -- Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) -- General theory of $C^*$-algebras.$2msc
650 7 $aFunctional analysis -- Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) -- Classifications of $C^*$-algebras.$2msc
650 7 $aFunctional analysis -- Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) -- $C^*$-modules.$2msc
650 7 $aTopological groups, Lie groups -- Locally compact groups and their algebras -- $C^*$-algebras and $W^*$-algebras in relation to group representations.$2msc
830 0 $aMathematical surveys and monographs ;$vno. 241.
852 00 $bmat$hQA36$i.W55 2019