Record ID | marc_columbia/Columbia-extract-20221130-030.mrc:90937356:4356 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-030.mrc:90937356:4356?format=raw |
LEADER: 04356cam a2200529Mi 4500
001 14727497
005 20220501001322.0
006 m o d
007 cr cn|||||||||
008 170919s2017 enk ob 001 0 eng d
035 $a(OCoLC)on1004350636
035 $a(NNC)14727497
040 $aCRCPR$beng$erda$epn$cCRCPR$dOCLCQ$dUWO$dOTZ$dTYFRS$dOCLCO$dOCLCF$dOCLCQ$dOCLCO$dK6U$dOCLCO
020 $a9781351464215$q(e-book ;$qPDF)
020 $a1351464213
020 $a9781315138237
020 $a1315138239
020 $a9781351464192
020 $a1351464191
020 $z9789056990763
024 7 $a10.1201/9781315138237$2doi
035 $a(OCoLC)1004350636
050 4 $aQA243$b.S996 2017
082 04 $a512.944
049 $aZCUA
100 1 $aSzymiczek, Kazimierz,$eauthor.
245 10 $aBilinear Algebra :$ban Introduction to the Algebraic Theory of Quadratic Forms /$cKazimierz Szymiczek.
250 $aFirst edition.
264 1 $aLondon :$bTaylor and Francis,$c2017.
300 $a1 online resource :$btext file, PDF
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
520 2 $a"Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields."--Provided by publisher.
504 $aIncludes bibliographical references and index.
505 00 $tPart, I Bilinear spaces /$rKazimierz Szymiczek --$tchapter 1 Introduction /$rKazimierz Szymiczek --$tchapter 2 Bilinear spaces /$rKazimierz Szymiczek --$tchapter 3 Bases and matrices of bilinear spaces /$rKazimierz Szymiczek --$tchapter 4 Isometries of bilinear spaces /$rKazimierz Szymiczek --$tchapter 5 Nonsingular bilinear spaces /$rKazimierz Szymiczek --$tchapter 6 Diagonalization of bilinear spaces /$rKazimierz Szymiczek --$tchapter 7 Witt's cancellation theorem /$rKazimierz Szymiczek --$tchapter 8 Witt's chain isometry theorem /$rKazimierz Szymiczek --$tchapter 9 Symmetric spaces over some fields /$rKazimierz Szymiczek --$tchapter 10 Isometry groups /$rKazimierz Szymiczek --$tpart, II Witt rings /$rKazimierz Szymiczek --$tchapter 11 Metabolic and hyperbolic spaces /$rKazimierz Szymiczek --$tchapter 12 Witt decomposition of symmetric spaces /$rKazimierz Szymiczek --$tchapter 13 Witt group /$rKazimierz Szymiczek --$tchapter 14 Tensor products /$rKazimierz Szymiczek --$tchapter 15 Witt ring /$rKazimierz Szymiczek --$tchapter 16 Quadratic forms /$rKazimierz Szymiczek --$tchapter 17 Pfister forms /$rKazimierz Szymiczek --$tchapter 18 Formally real fields and ordered fields /$rKazimierz Szymiczek --$tchapter 19 Prime ideals of the Witt ring /$rKazimierz Szymiczek --$tchapter 20 Witt equivalence of fields /$rKazimierz Szymiczek --$tpart, III Invariants /$rKazimierz Szymiczek --$tchapter 21 Algebras /$rKazimierz Szymiczek --$tchapter 22 Quaternion algebras /$rKazimierz Szymiczek --$tchapter 23 Tensor product of algebras /$rKazimierz Szymiczek --$tchapter 24 Brauer group /$rKazimierz Szymiczek --$tchapter 25 Hasse and Witt invariants /$rKazimierz Szymiczek.
650 0 $aBilinear forms.
650 0 $aForms, Quadratic.
650 6 $aFormes bilinéaires.
650 6 $aFormes quadratiques.
650 7 $aBilinear forms.$2fast$0(OCoLC)fst00831728
650 7 $aForms, Quadratic.$2fast$0(OCoLC)fst00932985
655 0 $aElectronic books.
655 4 $aElectronic books.
776 08 $z9781315138237
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio14727497$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS