Record ID | marc_columbia/Columbia-extract-20221130-031.mrc:240990855:13153 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-031.mrc:240990855:13153?format=raw |
LEADER: 13153cam a2200625 i 4500
001 15128012
005 20220703233949.0
006 m o d
007 cr cnu---unuuu
008 171208s2018 flu ob 001 0 eng d
035 $a(OCoLC)on1014329274
035 $a(NNC)15128012
040 $aN$T$beng$erda$epn$cN$T$dN$T$dOCLCF$dCNCGM$dIDEBK$dYDX$dOCLCQ$dIAT$dOCLCQ$dWYU$dUKAHL$dUKSSU$dS2H$dOCLCO$dOCLCQ$dOCLCO
020 $a9781351255394$q(electronic bk.)
020 $a1351255398$q(electronic bk.)
020 $a9781351255400$q(ebook)
020 $a1351255401$q(ebook)
020 $z9781138720794
020 $z1138720798
020 $z9781138720787
020 $z113872078X
035 $a(OCoLC)1014329274
050 4 $aTA775$b.H79 2018eb
072 7 $aTEC$x009020$2bisacsh
082 04 $a624.1/5$223
049 $aZCUA
100 1 $aHuang, An-Bin,$eauthor.
245 10 $aFoundation engineering analysis and design /$cby An-Bin Huang and Hai-Sui Yu.
264 1 $aBoca Raton :$bCRC Press,$c[2018]
264 4 $c©2018
300 $a1 online resource
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
504 $aIncludes bibliographical references and index.
588 0 $aOnline resource; title from PDF title page (EBSCO, viewed December 8, 2017).
505 0 $aCover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- List of figures -- List of tables -- Preface -- About the Authors -- 1. Soil behavior and critical state soil mechanics -- 1.1 Introduction -- 1.1.1 Safety analysis -- 1.1.2 Performance analysis -- 1.1.3 Soil behavior under the framework of critical state soil mechanics -- 1.2 Effective stress and soil properties -- 1.3 One-dimensional consolidation and time effect -- 1.3.1 The consolidation test -- 1.3.2 Preconsolidation stress -- 1.3.3 Primary consolidation settlement calculation -- 1.3.4 Time rate of primary consolidation settlement -- 1.3.5 Settlement due to secondary consolidation -- 1.4 Stressâ#x80;#x93;strain behavior and critical state of clays -- 1.4.1 Measurement of soil properties in the triaxial test -- 1.4.1.1 The consolidation stage -- 1.4.1.2 The shearing stage -- 1.4.2 Stressâ#x80;#x93;strain behavior of clays -- 1.4.3 Mohrâ#x80;#x93;Coulomb shear strength parameters of clays -- 1.4.4 Critical state in the shearing of clays -- 1.5 Stressâ#x80;#x93;strain behavior and critical state of sands -- 1.5.1 Mohrâ#x80;#x93;Coulomb shear strength parameters of sands -- 1.5.2 Critical state in the shearing of sands -- 1.6 Critical state and soil engineering properties -- 1.6.1 The state parameter -- 1.6.2 Critical state and engineering properties of clays -- 1.6.3 Critical state and engineering properties of sands -- 1.7 Theory of plasticity for modeling stressâ#x80;#x93;strain behavior -- 1.7.1 Yield criterion -- 1.7.2 Loading criterion -- 1.7.3 Plastic flow rule -- 1.7.4 Consistency condition -- 1.7.5 Elastic-plastic stressâ#x80;#x93;strain relation -- 1.7.6 Tresca and von Mises plasticity models for cohesive soils -- 1.7.7 Mohrâ#x80;#x93;Coulomb plasticity model for frictional soils -- 1.7.8 Unified critical state plasticity model for soils -- 1.8 Remarks -- Homework -- References.
505 8 $a2. Limit analysis and cavity expansion methods -- 2.1 Introduction -- 2.2 Limit equilibrium method -- 2.3 Introduction to plastic limit analysis -- 2.3.1 Lower-bound theorem of plastic collapse -- 2.3.2 Upper-bound theorem of plastic collapse -- 2.4 Upper-bound limit analysis -- 2.4.1 Velocity discontinuity and plastic power dissipation -- 2.4.2 Velocity fields from displacement diagrams -- 2.4.3 Upper-bound solution for a foundation on cohesive soil -- 2.4.4 Upper-bound for a foundation on cohesive-frictional soils -- 2.5 Lower-bound limit analysis -- 2.5.1 Discontinuous stress fields -- 2.5.2 Discontinuous stress fields in a state of Tresca (undrained cohesive) failure -- 2.5.3 Discontinuous stress fields in a state of Mohrâ#x80;#x93;Coulomb (cohesive-frictional) failure -- 2.5.4 Lower bound for a foundation on cohesive soils -- 2.5.5 Lower bound for a foundation on cohesive-frictional soils -- 2.6 Cavity expansion methods -- 2.6.1 The cavity expansion problem in elastic-plastic soils -- 2.6.2 Limit pressure for undrained expansion of a spherical cavity in clay -- 2.6.3 Limit pressure for undrained expansion of a cylindrical cavity in clay -- 2.6.4 Limit pressure for expansion of spherical and cylindrical cavities in cohesive-frictional soils -- 2.6.5 Application of cavity expansion theory in deep foundations -- 2.7 Remarks -- Homework -- References -- 3. Subsurface exploration for foundation design -- 3.1 Introduction -- 3.2 Planning of subsurface exploration -- 3.2.1 Methods available for the exploration -- 3.2.2 Frequency and depth of exploration -- 3.2.3 Field testing, drilling/sampling program -- 3.2.4 Laboratory testing program -- 3.3 Drilling and sampling -- 3.3.1 Drilling methods -- 3.3.1.1 Hand auger/shovel -- 3.3.1.2 Percussion drilling -- 3.3.1.3 Rotary wash boring -- 3.3.1.4 Power auger -- 3.3.2 Soil sampling.
505 8 $a3.3.3 Taking soil samples with a thin-walled sampling tube -- 3.3.3.1 The thin-walled â#x80;Shelbyâ#x80;#x9D; tube sampler -- 3.3.3.2 The Osterberg piston sampler -- 3.3.3.3 The gel-push sampler -- 3.3.4 The split-spoon sampler -- 3.3.5 Rock coring -- 3.3.6 Sample quality assurance and verification -- 3.3.7 Observation of groundwater level and field logging -- 3.4 In-situ testing -- 3.4.1 Standard penetration test (SPT) -- 3.4.1.1 Equipment and test procedure -- 3.4.1.2 Engineering properties of sands according to SPT N values -- 3.4.1.3 Liquefaction potential assessment based on SPT N values -- 3.4.2 Cone penetration test (CPT) -- 3.4.2.1 Equipment and test procedure -- 3.4.2.2 Soil classification according to cone penetration tests -- 3.4.2.3 The Robertson SBTn charts -- 3.4.2.4 The Schneider et al. Qtâ#x80;#x93;Fr and Qtâ#x80;#x93;U2 charts -- 3.4.3 Engineering properties of clays from CPT -- 3.4.3.1 Undrained shear strength -- 3.4.3.2 Stress history: Overconsolidation ratio (OCR) -- 3.4.3.3 Coefficient of consolidation -- 3.4.4 Engineering properties of sands from CPT -- 3.4.4.1 Estimation of Dr -- 3.4.4.2 Liquefaction potential assessment based on CPT -- 3.4.5 Flat dilatometer tests (DMT) -- 3.4.6 Geotechnical parameters of clays from DMT -- 3.4.6.1 Overconsolidation ratio -- 3.4.6.2 Undrained shear strength -- 3.4.6.3 Constrained modulus -- 3.4.6.4 Coefficient of consolidation -- 3.4.7 Geotechnical parameters of sands from DMT -- 3.4.8 Pressuremeter tests (PMT) -- 3.4.8.1 Interpretation of the PMT data -- 3.5 Geophysical methods -- 3.5.1 Seismic methods -- 3.5.1.1 Body waves -- 3.5.1.2 Surface waves -- 3.5.2 Nonintrusive seismic methods -- 3.5.2.1 Reflection method -- 3.5.2.2 Refraction method -- 3.5.2.3 Surface wave methods -- 3.5.3 Intrusive seismic methods -- 3.5.3.1 Crosshole method -- 3.5.3.2 Pâ#x80;#x93;S logging -- 3.5.4 Electrical resistivity methods.
505 8 $a3.5.4.1 Vertical profiling -- 3.5.4.2 Horizontal profiling -- 3.6 Subsurface exploration report -- 3.7 Remarks -- Homework -- References -- 4. Shallow foundations: Bearing capacity and settlement -- 4.1 Introduction -- 4.2 Ultimate bearing capacity of strip foundations -- 4.2.1 Kinematic failure mechanisms -- 4.2.2 Bearing capacity calculation neglecting self-weight of soil -- 4.2.3 Bearing capacity calculation considering weight of soil -- 4.2.4 Effects of soilâ#x80;#x93;foundation interface friction considering weight of soil -- 4.3 Bearing capacity of rectangular and circular foundations in cohesive soils -- 4.3.1 Bearing capacity of square and circular foundations on cohesive soil -- 4.4 Consideration of foundation shape, embedment, and load inclination in cohesive-frictional soils -- 4.4.1 Consideration of foundation shapes, inclined loading, and embedment depth -- 4.5 Bearing capacity of eccentrically loaded foundations -- 4.6 Effects of ground water and consideration of drainage conditions -- 4.6.1 For drained analysis -- 4.6.1.1 Case I -- 4.6.1.2 Case II -- 4.6.2 For undrained analysis -- 4.7 Factor of safety and allowable bearing capacity -- 4.8 Foundation settlement -- 4.8.1 Vertical stress increase in soil due to external loading on foundations -- 4.8.1.1 Stress increase due to a concentrated load -- 4.8.1.2 Stress increase due to a uniformly loaded circular area -- 4.8.1.3 Stress increase due to a uniformly loaded rectangular area -- 4.9 Foundation settlement due to soil elastic deformation -- 4.10 Foundation settlement due to primary consolidation in cohesive soils -- 4.11 Foundations settlement due to secondary consolidation in cohesive soils -- 4.12 Foundation settlement in granular soils using the strain influence factor method -- 4.13 Remarks -- Homework -- References -- 5. Lateral earth pressure and retaining structures.
505 8 $a5.1 Introduction -- 5.2 At-rest lateral earth pressure -- 5.3 Lateral earth pressureâ#x80;#x94;Coulombâ#x80;#x99;s method -- 5.3.1 Coulomb active earth pressure -- 5.3.2 Coulomb passive earth pressure -- 5.4 Lateral earth pressureâ#x80;#x94;Rankineâ#x80;#x99;s method -- 5.4.1 Rankine active earth pressure -- 5.4.2 Rankine passive earth pressure -- 5.5 Lateral earth pressureâ#x80;#x94;limit analysis -- 5.6 Effects of cohesion on lateral earth pressure -- 5.7 Consideration of surcharge -- 5.7.1 Point load -- 5.7.2 Line load -- 5.7.3 Strip load -- 5.8 Active lateral earth pressure for earthquake conditions -- 5.9 Comments on the merits of the lateral earth pressure theories -- 5.10 Effects of water in backfill -- 5.11 Design of retaining structures -- 5.12 Concrete retaining walls -- 5.12.1 Stability analysis of cantilever retaining walls -- 5.12.2 Drainage for the retaining walls -- 5.13 Mechanically stabilized earth-retaining walls -- 5.13.1 Mechanics of soil reinforcement -- 5.13.2 Stress transfer at the reinforcement-soil interface -- 5.13.3 Types of MSE wall systems -- 5.13.3.1 By reinforcement geometry -- 5.13.3.2 By reinforcement material -- 5.13.3.3 By extensibility of the reinforcement -- 5.13.3.4 By facing system -- 5.13.4 Material properties -- 5.13.4.1 The soil backfill -- 5.13.4.2 The metal strip reinforcement -- 5.13.4.3 The geosynthetic reinforcement -- 5.13.4.4 Pullout resistance of the reinforcement -- 5.13.5 Design procedure of MSE walls -- 5.13.5.1 Internal stability evaluation using the simplified method -- 5.13.5.2 Design of the MSE wall facing and connection -- 5.13.5.3 Deformation analysis of the MSE wall -- 5.14 Sheet pile walls -- 5.14.1 Limit equilibrium method -- 5.14.2 Finite element method -- 5.14.3 Soilâ#x80;#x93;structural interaction method -- 5.14.4 Limit equilibrium methodâ#x80;#x94;cantilever sheet pile walls -- 5.14.4.1 For cantilever sheet piles penetrating in sand.
520 8 $aOne of the core roles of a practising geotechnical engineer is to analyse and design foundations. This textbook for advanced undergraduates and graduate students covers the analysis, design and construction of shallow and deep foundations and retaining structures as well as the stability analysis and mitigation of slopes. It progressively introduces critical state soil mechanics and plasticity theories such as plastic limit analysis and cavity expansion theories before leading into the theories of foundation, lateral earth pressure and slope stability analysis. On the engineering side, the book introduces construction and testing methods used in current practice. Throughout it emphasises the connection between theory and practice. It prepares readers for the more sophisticated non-linear elastic-plastic analysis in foundation engineering which is commonly used in engineering practice, and serves too as a reference book for practising engineers. A companion website provides a series of Excel spreadsheet programs to cover all examples included in the book, and PowerPoint lecture slides and a solutions manual for lecturers. Using Excel, the relationships between the input parameters and the design and analysis results can be seen. Numerical values of complex equations can be calculated quickly. non-linearity and optimisation can be brought in more easily to employ functioned numerical methods. And sophisticated methods can be seen in practice, such as p-y curve for laterally loaded piles and flexible retaining structures, and methods of slices for slope stability analysis.
650 0 $aFoundations.
650 0 $aSoil mechanics.
650 6 $aFondations (Construction)
650 6 $aMécanique des sols.
650 7 $afoundations (structural elements)$2aat
650 7 $asoil mechanics.$2aat
650 7 $aTECHNOLOGY & ENGINEERING$xCivil$xGeneral.$2bisacsh
650 7 $aFoundations.$2fast$0(OCoLC)fst00933266
650 7 $aSoil mechanics.$2fast$0(OCoLC)fst01124463
655 4 $aElectronic books.
700 1 $aYu, Hai-Sui,$eauthor.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio15128012$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS