Record ID | marc_columbia/Columbia-extract-20221130-031.mrc:250034668:5040 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-031.mrc:250034668:5040?format=raw |
LEADER: 05040cam a2200529Mi 4500
001 15130912
005 20220604234321.0
006 m o d
007 cr cn|||||||||
008 180306s2000 flu o 000 0 eng d
035 $a(OCoLC)on1027749812
035 $a(NNC)15130912
040 $aCRCPR$beng$erda$epn$cCRCPR$dOCLCO$dOCLCF$dOCLCQ$dOCLCO$dEBLCP$dNLE$dUKMGB$dTYFRS$dOCLCQ$dK6U$dOCLCO
015 $aGBB892050$2bnb
016 7 $a018865836$2Uk
020 $a9781482270525$q(e-book)
020 $a1482270528
035 $a(OCoLC)1027749812
037 $aTANDF_377560$bIngram Content Group
050 4 $aQA564.O97 2000
072 7 $aMAT002000$2bisacsh
082 04 $a516.3/5
049 $aZCUA
245 00 $aAlgebraic Geometry for Associative Algebras /$ceditor, Freddy Van Oystaeyen.
250 $aFirst edition.
264 1 $aBoca Raton, FL :$bCRC Press,$c2000.
300 $a1 online resource :$btext file, PDF
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
490 0 $aChapman & Hall/CRC Pure and Applied Mathematics
520 2 $a"This work focuses on the association of methods from topology, category and sheaf theory, algebraic geometry, noncommutative and homological algebras, quantum groups and spaces, rings of differential operation, Cech and sheaf cohomology theories, and dimension theories to create a blend of noncommutative algebraic geometry. It offers a scheme theory that sustains the duality between algebraic geometry and commutative algebra to the noncommutative level."--Provided by publisher.
505 0 $aCover; Half Title; Title Page; Copyright Page; Preface; Contents; Introduction; Chapter 1 The Noncommutative Site; 1.1 Affine Schematic Algebras; 1.1.1 Example. The generator filtration; 1.1.2 Convention; 1.1.3 Proposition; 1.1.4 Example. Rees Rings of the Weyl Algebras; 1.1.5 Proposition; 1.1.6 Remarks; 1.1.7 Definitions; 1.1.8 Proposition; 1.1.9 Rings of Generic Matrices; 1.1.10 Lemma; 1.1.11 Note; 1.1.12 Examples; 1.1.13 Definition; 1.2 Proj and Schematic Algebras; 1.2.1 Definition; 1.2.2 Lemma; 1.2.3 Lemma; 1.2.4 Proposition; 1.2.5 Theorem; 1.2.6 Corollary; 1.2.7 Proposition
505 8 $a1.2.8 Proposition1.2.9 Proposition; 1.2.10 Corollary; 1.2.11 Example; 1.2.12 Lemma; 1.2.13 Corollary; 1.2.14 Example. Quantum Weyl Algebras; 1.2.15 Lemma; 1.2.16 Lemma; 1.2.17 Proposition; 1.2.18 Remark; 1.2.19 Theorem; 1.2.20 Corollary; 1.2.21 Example: E. Witten's gauge algebras for S U(2); 1.2.22 Theorem; 1.2.23 Example. Quantum Sl 2 (Woronowicz); 1.2.24 Theorem; 1.2.25 Corollary; 1.3 Schemes on the Noncommutative Site; 1.3.1 Lemma; 1.3.2 Lemma (cf . [9], [71]); 1.3.3 Proposition; 1.3.4 Trivial Examples; 1.3.5 Theorem; 1.3.6 Theorem; 1.3.7 Lemma; 1.3.8 Theorem; 1.3.9 Proposition
505 8 $a1.3.10 Definition and Observation1.3.11 Lemma; 1.3.12 Definition; 1.3.13 Definition; 1.3.14 Observation; 1.3.15 Proposition; 1.3.16 Lemma; 1.3.17 Theorem; 1.3.18 Proposition; Chapter 2 Structure Sheaves and their Sections; 2.1 Serre's Global Section Theorem on the Noncommutative Site; 2.1.1 Definition; 2.1.2 Remark; 2.1.3 Example; 2.1.4 Theorem; 2.1.5 Theorem; 2.1.6 Theorem; 2.1.7 Observation; 2.1.8 Proposition; 2.1.9 Proposition; 2.1.10 Proposition; 2.2 The Quantum Site; 2.2.1 Proposition; 2.2.2 Lemma; 2.2.3 Lemma; 2.2.4 Lemma; 2.2.5 Lemma; 2.2.6 Lemma; 2.2.7 Definition; 2.2.8 Theorem
505 8 $a2.2.9 Observation2.2.10 Proposition; 2.2.11 Corollary; 2.2.12 Proposition; 2.2.13 Corollary; 2.3 Quantum Sections. Examples; 2.3.1 The First Weyl Algebra A1 (~); 2.3.2 Quantum Sections of Enveloping Algebras; 2.3.3 Observation; 2.3.4 Example; 2.3.5 Colour Lie Super Algebras; 2.3.6 Theorem; 2.3.7 Quantized Weyl Algebras; 2.4 Almost Commutative Geometry; 2.4.A Sheaves of Localizations; 2.4.1 Lemma; 2.4.2 Corollary; 2.4.3 Proposition; 2.4.4 Corollary; 2.4.5 Theorem; 2.4.6 Theorem; 2.4.7 Observation; 2.4.8 Proposition; 2.4.9 Example; 2.4.10 Theorem; 2.4.11 Corollary; 2.4.12 Proposition
505 8 $a2.4.B Sheaves of Microlocalizations and Quantum Sections2.4.13 Proposition; 2.4.14 Theorem; 2.4.15 Remark; 2.4.16 Theorem; 2.4.17 Corollary; 2.4.18 Example; 2.4.C Quantized Formal Schemes; 2.4.19 Theorem; 2.4.20 Theorem; 2.4.21 Lemma; 2.4.22 Lemma; 2.4.23 Meta-Lemma; 2.4.24 Theorem; 2.4.25 Theorem; Chapter 3 Regular Algebras; 3.1 Some Facts about Dimensions; 3.1.1 Proposition; 3.1.2 Theorem (Change of Rings Theorems); 3.1.3 Theorem (M. Auslander); 3.1.4 Proposition; 3.1.5 Theorem (cf. [71, Theorem 12, p. 68]); 3.1.6 Proposition (Graded Version of Auslander's Theorem)
650 0 $aAlgebra.
650 6 $aAlgèbre.
650 7 $aalgebra.$2aat
650 7 $aAlgebra.$2fast$0(OCoLC)fst00804885
655 0 $aElectronic books.
655 4 $aElectronic books.
700 1 $aVan Oystaeyen, Freddy,$eeditor.
776 08 $z9781482270525$z9780824704247
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio15130912$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS