Record ID | marc_columbia/Columbia-extract-20221130-031.mrc:256430991:5098 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-031.mrc:256430991:5098?format=raw |
LEADER: 05098cam a2200649Mu 4500
001 15132515
005 20220507232724.0
006 m o d
007 cr |n|---|||||
008 180512s1997 xx o 000 0 eng d
035 $a(OCoLC)on1035519046
035 $a(NNC)15132515
040 $aEBLCP$beng$epn$cEBLCP$dYDX$dN$T$dOCLCF$dOCLCQ$dK6U$dOCLCO
019 $a1021223556$a1080588474$a1080644757$a1081031431
020 $a9781439864548
020 $a1439864543
020 $z1568810695
020 $z9781568810690
035 $a(OCoLC)1035519046$z(OCoLC)1021223556$z(OCoLC)1080588474$z(OCoLC)1080644757$z(OCoLC)1081031431
050 4 $aQA351.048 1997
072 7 $aMAT$x005000$2bisacsh
072 7 $aMAT$x034000$2bisacsh
082 04 $a515.5
049 $aZCUA
100 1 $aOlver, Frank.
245 10 $aAsymptotics and Special Functions.
250 $a2nd ed.
260 $aNatick :$bChapman and Hall/CRC,$c1997.
300 $a1 online resource (591 pages)
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
490 1 $aAKP classics
588 0 $aPrint version record.
505 0 $aCover; Title Page; Copyright Page; Dedication; Table of Contents; Preface to A K Peters Edition; Preface; 1: Introduction to Asymptotic Analysis; 1 Origin of Asymptotic Expansions; 2 The Symbols ~, o, and 0; 3 The Symbols ~, o, and 0 (continued); 4 Integration and Differentiation of Asymptotic and Order Relations; 5 Asymptotic Solution of Transcendental Equations: Real Variables; 6 Asymptotic Solution of Transcendental Equations: Complex Variables; 7 Definition and Fundamental Properties of Asymptotic Expansions; 8 Operations with Asymptotic Expansions.
505 8 $a9 Functions Having Prescribed Asymptotic Expansions10 Generalizations of Poincard's Definition; 11 Error Analysis; Variational Operator; Historical Notes and Additional References; 2: Introduction to Special Functions; 1 The Gamma Function; 2 The Psi Function; 3 Exponential, Logarithmic, Sine, and Cosine Integrals; 4 Error Functions, Dawson's Integral, and Fresnel Integrals; 5 Incomplete Gamma Functions; 6 Orthogonal Polynomials; 7 The Classical Orthogonal Polynomials; 8 The Airy Integral; 9 The Bessel Function Jv(z); 10 The Modified Bessel Function Iv(z); 11 The Zeta Function.
505 8 $aHistorical Notes and Additional References3: Integrals of a Real Variable; 1 Integration by Parts; 2 Laplace Integrals; 3 Watson's Lemma; 4 The Riemann-Lebesgue Lemma; 5 Fourier Integrals; 6 Examples; Cases of Failure; 7 Laplace's Method; 8 Asymptotic Expansions by Laplace's Method; Gamma Function of Large Argument; 9 Error Bounds for Watson's Lemma and Laplace's Method; 10 Examples; 11 The Method of Stationary Phase; 12 Preliminary Lemmas; 13 Asymptotic Nature of the Stationary Phase Approximation; 14 Asymptotic Expansions by the Method of Stationary Phase.
505 8 $aHistorical Notes and Additional References4: Contour Integrals; 1 Laplace Integrals with a Complex Parameter; 2 Incomplete Gamma Functions of Complex Argument; 3 Watson's Lemma; 4 Airy Integral of Complex Argument; Compound Asymptotic Expansions; 5 Ratio of Two Gamma Functions; Watson's Lemma for Loop Integrals; 6 Laplace's Method for Contour Integrals; 7 Saddle Points; 8 Examples; 9 Bessel Functions of Large Argument and Order; 10 Error Bounds for Laplace's Method; the Method of Steepest Descents; Historical Notes and Additional References.
505 8 $a5: Differential Equations with Regular Singularities Hypergeometric and Legendre Functions; 1 Existence Theorems for Linear Differential Equations: Real Variables; 2 Equations Containing a Real or Complex Parameter; 3 Existence Theorems for Linear Differential Equations: Complex Variables; 4 Classification of Singularities; Nature of the Solutions in the Neighborhood of a Regular Singularity; 5 Second Solution When the Exponents Differ by an Integer or Zero; 6 Large Values of the Independent Variable; 7 Numerically Satisfactory Solutions; 8 The Hypergeometric Equation.
500 $a9 The Hypergeometric Function.
650 0 $aFunctions, Special.
650 0 $aAsymptotic expansions.
650 0 $aDifferential equations$xNumerical solutions.
650 6 $aFonctions spéciales.
650 6 $aDéveloppements asymptotiques.
650 6 $aÉquations différentielles$xSolutions numériques.
650 7 $aMATHEMATICS$xCalculus.$2bisacsh
650 7 $aMATHEMATICS$xMathematical Analysis.$2bisacsh
650 7 $aAsymptotic expansions.$2fast$0(OCoLC)fst00819868
650 7 $aDifferential equations$xNumerical solutions.$2fast$0(OCoLC)fst00893451
650 7 $aFunctions, Special.$2fast$0(OCoLC)fst00936132
655 0 $aElectronic books.
655 4 $aElectronic books.
776 08 $iPrint version:$aOlver, Frank.$tAsymptotics and Special Functions.$dNatick : Chapman and Hall/CRC, ©1997$z9781568810690
830 0 $aAKP classics.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio15132515$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS