It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-031.mrc:310430400:4684
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-031.mrc:310430400:4684?format=raw

LEADER: 04684cam a2200589 i 4500
001 15166400
005 20220924225528.0
006 m o d
007 cr |||||||||||
008 130717s2013 nju ob 001 0 eng
010 $a 2013028885
035 $a(OCoLC)ocn853287291
035 $a(NNC)15166400
040 $aDLC$beng$erda$epn$cDLC$dYDX$dYDXCP$dEBLCP$dN$T$dOCLCF$dWAU$dDEBSZ$dS3O$dZCU$dMERUC$dOCLCQ$dICG$dVT2$dOCLCQ$dWYU$dOCLCQ$dDKC$dOCLCQ$dBWN$dESU$dOCLCQ$dUKBTH$dOCLCO$dOCLCQ
020 $a9781118789551$q(pdf)
020 $a1118789555$q(pdf)
020 $a9781118594858$q(epub)
020 $a1118594851$q(epub)
020 $z9781118386088$q(hardback)
035 $a(OCoLC)853287291
042 $apcc
050 00 $aQA278.2
072 7 $aMAT$x003000$2bisacsh
072 7 $aMAT$x029000$2bisacsh
082 00 $a519.5/36$223
084 $aMAT029030$aMAT029000$aMAT003000$2bisacsh
049 $aZCUA
100 1 $aWeisberg, Sanford,$d1947-
245 10 $aApplied linear regression /$cSanford Weisberg, School of Statistics, University of Minnesota, Minneapolis, MN.
250 $aFourth edition.
264 1 $aHoboken, New Jersey :$bJohn Wiley & Sons, Inc.,$c[2013]
300 $a1 online resource
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
504 $aIncludes bibliographical references and index.
588 0 $aPrint version record and CIP data provided by publisher.
520 $a"Providing a coherent set of basic methodology for applied linear regression without being encyclopedic, the fourth edition of Applied Linear Regression is thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, this updated edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them"--$cProvided by publisher
505 8 $a2.7 The Coefficient of Determination, R22.8 The Residuals; CHAPTER 3: Multiple Regression; 3.1 Adding a Regressor to a Simple Linear Regression Model; 3.2 The Multiple Linear Regression Model; 3.3 Predictors and Regressors; 3.4 Ordinary Least Squares; 3.5 Predictions, Fitted Values, and Linear Combinations; CHAPTER 4: Interpretation of Main Effects; 4.1 Understanding Parameter Estimates; 4.2 Dropping Regressors; 4.3 Experimentation versus Observation; 4.4 Sampling from a Normal Population; 4.5 More on R2; CHAPTER 5: Complex Regressors; 5.1 Factors; 5.2 Many Factors; 5.3 Polynomial Regression
505 8 $a5.4 Splines5.5 Principal Components; 5.6 Missing Data; CHAPTER 6: Testing and Analysis of Variance; 6.1 F-Tests; 6.2 The Analysis of Variance; 6.3 Comparisons of Means; 6.4 Power and Non-Null Distributions; 6.5 Wald Tests; 6.6 Interpreting Tests; CHAPTER 7: Variances; 7.1 Weighted Least Squares; 7.2 Misspecified Variances; 7.3 General Correlation Structures; 7.4 Mixed Models; 7.5 Variance Stabilizing Transformations; 7.6 The Delta Method; 7.7 The Bootstrap; CHAPTER 8: Transformations; 8.1 Transformation Basics; 8.2 A General Approach to Transformations; 8.3 Transforming the Response
505 8 $a8.4 Transformations of Nonpositive Variables8.5 Additive Models; CHAPTER 9: Regression Diagnostics; 9.1 The Residuals; 9.2 Testing for Curvature; 9.3 Nonconstant Variance; 9.4 Outliers; 9.5 Influence of Cases; 9.6 Normality Assumption; CHAPTER 10: Variable Selection; 10.1 Variable Selection and Parameter Assessment; 10.2 Variable Selection for Discovery; 10.3 Model Selection for Prediction; CHAPTER 11: Nonlinear Regression; 11.1 Estimation for Nonlinear Mean Functions; 11.2 Inference Assuming Large Samples; 11.3 Starting Values; 11.4 Bootstrap Inference; 11.5 Further Reading
650 0 $aRegression analysis.
650 6 $aAnalyse de régression.
650 7 $aMATHEMATICS$xProbability & Statistics$xRegression Analysis.$2bisacsh
650 7 $aMATHEMATICS$xProbability & Statistics$xGeneral.$2bisacsh
650 7 $aMATHEMATICS$xApplied.$2bisacsh
650 7 $aRegression analysis.$2fast$0(OCoLC)fst01432090
650 7 $aRegressionsanalys.$2sao
655 4 $aElectronic books.
776 08 $iPrint version:$aWeisberg, Sanford, 1947-$tApplied linear regression.$bFourth edition.$dHoboken, NJ : Wiley, [2013]$z9781118386088$w(DLC) 2013026538
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio15166400$zAll EBSCO eBooks
852 8 $blweb$hEBOOKS