It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-031.mrc:319211713:8054
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-031.mrc:319211713:8054?format=raw

LEADER: 08054cam a2200781 i 4500
001 15184129
005 20220730231123.0
006 m o d
007 cr |||||||||||
008 190905s2020 flua ob 001 0 eng
010 $a 2019039798
035 $a(OCoLC)on1120787373
035 $a(NNC)15184129
040 $aDLC$beng$erda$epn$cDLC$dOCLCO$dOCLCF$dYDX$dEBLCP$dUKMGB$dTYFRS$dN$T$dYDX$dOCLCQ$dOCLCO$dK6U
015 $aGBB9K4688$2bnb
016 7 $a019654787$2Uk
020 $a9781000763546$q(electronic publication)
020 $a1000763544$q(electronic publication)
020 $a9781000763447$q(electronic book)
020 $a1000763447$q(electronic book)
020 $a9781000763492$q(Mobipocket electronic book)
020 $a1000763498$q(Mobipocket electronic book)
020 $a9780429288326$q(electronic book)
020 $a0429288328$q(electronic book)
020 $z9780367228842$q(hardcover$qacid-free paper)
024 7 $a10.1201/9780429288326$2doi
035 $a(OCoLC)1120787373
037 $a9781000763546$bIngram Content Group
037 $a9780429288326$bTaylor & Francis
042 $apcc
050 04 $aTP325$b.K3185 2020
072 7 $aTEC$x009010$2bisacsh
072 7 $aTEC$x031010$2bisacsh
072 7 $aTEC$x031030$2bisacsh
072 7 $aTH$2bicssc
082 00 $a662.6/2$223
049 $aZCUA
100 1 $aKawatra, S. K.,$eauthor.
245 10 $aAdvanced coal preparation and beyond :$bCO₂ capture and untilization /$cS. Komar Kawatra.
264 1 $aBoca Raton, FL :$bCRC Press/Taylor & Francis Group,$c[2020]
300 $a1 online resource (xix, 476 pages)
336 $atext$btxt$2rdacontent
337 $acomputer$bn$2rdamedia
338 $aonline resource$bnc$2rdacarrier
504 $aIncludes bibliographical references and index.
520 $a"Updating content from the author's 2001 book Coal Desulfurization, this new title focuses on CO₂ sequestration and utilization. It includes information on the theory and practical approaches to CO₂ capture and recent advances in the use of sequestered CO₂"--$cProvided by publisher.
545 0 $aDr. S. Komar Kawatra obtained an M.S. in Physics from the University of Poona, India and a PhD in Metallurgy from the University of Queensland, Australia. At present he is a Professor of Chemical Engineering at Michigan Technological University (Michigan Tech). His research focuses on the optimization of mineral processing operations and reusing industrial wastes. His research experience includes work at the Bhabha Atomic Research Center, Trombay, Bombay, India; Julius Kruttschnitt Mineral Research Centre, Brisbane, Australia; and Canada Centre for Mineral and Energy Technology, Ottawa; the National Energy Technology Laboratory, U.S.; the University of Alberta; and Michigan Tech. Dr. Kawatra has received several awards from the Society for Mining, Metallurgy and Exploration including: the Distinguished Member Award, the Taggart Award, the Gaudin Award, and the Presidential Citation. He has also received the Robert H. Richards Award and the Frank F. Aplan Award from the American Institute of Mining, Metallurgy, and Petroleum Engineers, the Michigan Tech Research Award and Graduate Student Mentor Award, the IEEE Certificate of Service, and the Michigan Association of Governing Boards Distinguished Faculty Member Award. He completed the Fulbright Scholarship Program in 2012. Dr. Kawatra has received several patents stemming from his research. One notable patent is for the E-Iron Nugget Process (U.S. Patent No. 7,632,330), which produces iron using environmentally-benign reducing agents. This process was independently found to be commercially viable by Purdue University. Carbontec Energy Corporation recently formed E-Iron International, LLC to construct a 300,000 tonnes/year plant in Burns Harbor, Indiana, which will sell to a U.S. market which currently imports 4MM tonnes/year of pig iron. Dr. Kawatra is Editor-in-Chief of the Journal of Mineral Processing and Extractive Metallurgy Review, published by Taylor and Francis.
588 0 $aOnline resource; title from digital title page (viewed on March 13, 2020).
505 0 $aCover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Author -- Chapter 1 Introduction -- 1.1 Need for Carbon Dioxide Capture -- 1.2 Need for Sulfur Removal -- 1.3 Forms of Sulfur in Coal -- 1.3.1 Sources of Sulfur in Coal -- 1.3.2 Pyritic Sulfur -- 1.3.3 Organic Sulfur -- 1.3.3.1 Thiols -- 1.3.3.2 Suldefis -- 1.3.3.3 Disuldefis -- 1.3.3.4 Thiophenes -- 1.3.3.5 Occurrence of the Forms of Organic Sulfur -- 1.3.4 Sulfate Sulfur -- 1.3.5 Elemental Sulfur -- 1.4 Properties of Coal -- 1.5 Liberation -- 1.6 Advanced Coal Cleaning
505 8 $a1.7 Relationships for Calculating Sulfur Removal Performance -- 1.7.1 Yield -- 1.7.2 Combustibles -- 1.7.3 Sulfur Reduction -- 1.7.4 Sulfur Removal -- 1.7.5 Desirables Recovery -- 1.7.6 Separation Efcfiiency -- 1.8 Summary -- References -- Chapter 2 Analytical Methods -- 2.1 Chemical Methods -- 2.1.1 ASTM Standard Methods -- 2.1.1.1 Total Sulfur -- 2.1.1.2 Sulfate Sulfur (ASTM D2492, D8214) -- 2.1.1.3 Pyritic Sulfur (ASTM D2492, D8214) -- 2.1.1.4 Organic Sulfur -- 2.1.2 Elemental Sulfur -- 2.1.3 Organic Sulfur Forms -- 2.2 Spectroscopic Methods -- 2.2.1 X-Ray Spectroscopy -- 2.2.1.1 Fluorescence
505 8 $a2.2.1.2 Diffraction -- 2.2.1.3 X-Ray Photoelectron Spectroscopy (XPS) -- 2.2.2 Mössbauer Spectroscopy -- 2.2.3 Infrared Spectroscopy -- 2.2.4 Raman Spectroscopy -- 2.2.5 Nuclear Magnetic Resonance -- 2.2.6 Auger Electron Spectroscopy -- 2.2.7 Secondary Ion Mass Spectroscopy -- 2.3 Microscopic Techniques -- 2.3.1 Optical Microscopy -- 2.3.2 Electron Microprobe Analysis -- 2.3.3 Image Analysis -- 2.4 Other Techniques -- 2.4.1 Float-Sink Analysis -- 2.4.2 Thermal Analysis -- 2.4.3 Chromatographic Analysis -- 2.5 On-Line Analysis -- 2.5.1 X-Ray Fluorescence
505 8 $a2.5.2 Prompt Gamma Neutron Activation Analysis -- 2.5.2.1 Principle of Operation -- 2.5.2.2 Calibration -- 2.5.2.3 Equipment Design -- 2.5.2.4 Applications -- 2.5.3 On-Line Ash Analysis in Coal Slurries -- 2.6 Emissions Monitoring -- 2.7 Summary -- References -- Chapter 3 Precombustion/Postcombustion Desulfurization -- 3.1 Precombustion Desulfurization -- 3.1.1 Benefits of Precombustion Desulfurization -- 3.1.2 Processing Costs -- 3.2 Postcombustion Desulfurization -- 3.2.1 Scrubber Technologies -- 3.2.1.1 Wet Scrubbers -- 3.2.1.2 Spray-Dry Scrubbers -- 3.2.1.3 Venturi Scrubbers
505 8 $a3.2.1.4 Dry Sorbent Injection -- 3.2.1.5 SNOX System -- 3.2.2 In-Combustor Technologies -- 3.2.2.1 Fluid-Bed Combustion (FBC) -- 3.2.2.2 Integrated Gasification Combined Cycle -- 3.3 Relative Costs of Sulfur Control Processes -- 3.3.1 Postcombustion Sulfur Removal Costs -- 3.3.2 Benefits of Combining Precombustion and Postcombustion Desulfurization -- 3.4 Summary -- References -- Chapter 4 Heavy-Media Separation -- 4.1 Determination of Sulfur-Removal Ability of Density Separators -- 4.2 Case Study: Analysis of Sulfur Removal at the Meigs Plant -- 4.2.1 Plant Description
650 0 $aClean coal technologies.
650 0 $aCarbon sequestration.
650 0 $aCoal$xCombustion$xBy-products.
650 6 $aTechnologie du charbon propre.
650 6 $aPiégeage du carbone.
650 6 $aCharbon$xCombustion$xSous-produits.
650 7 $aTECHNOLOGY$xEngineering$xChemical & Biochemical.$2bisacsh
650 7 $aCarbon sequestration.$2fast$0(OCoLC)fst00846873
650 7 $aClean coal technologies.$2fast$0(OCoLC)fst01747225
650 7 $aCoal$xCombustion$xBy-products.$2fast$0(OCoLC)fst00865099
655 0 $aElectronic books.
655 4 $aElectronic books.
776 08 $iPrint version:$aKawatra, S.K.$tAdvanced coal preparation and beyond.$dBoca Raton, FL : CRC Press/Taylor & Francis, [2020]$z9780367228842$w(DLC) 2019039797
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio15184129$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS