It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-031.mrc:45664304:5889
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-031.mrc:45664304:5889?format=raw

LEADER: 05889cam a2200949 a 4500
001 15071485
005 20220618231135.0
006 m o d
007 cr cnu---unuuu
008 080318s2008 flua ob 001 0 eng d
035 $a(OCoLC)ocn213442382
035 $a(NNC)15071485
040 $aN$T$beng$epn$cN$T$dYDXCP$dOCLCQ$dVLB$dOCLCQ$dOHS$dE7B$dTULIB$dOCLCQ$dOCLCF$dOCLCO$dUIU$dIDEBK$dCRCPR$dOCLCQ$dOCLCO$dGAT$dOCLCQ$dUAB$dERL$dOCLCO$dOCLCQ$dNLE$dOCLCO$dUKMGB$dOCLCO$dWYU$dOCLCA$dYDX$dTYFRS$dLEAUB$dOL$$dUKAHL$dOCLCQ$dOCLCO$dZCU$dSFB$dOCLCO$dOCLCQ
015 $aGBB7C7369$2bnb
016 7 $a018428846$2Uk
019 $a438949755$a502437515$a648349185$a779914986$a1031054801$a1065704882$a1102531365$a1260361262
020 $a9781584888796$q(electronic bk.)
020 $a1584888792$q(electronic bk.)
020 $a9781584888789
020 $a1584888784
020 $a9780429150418$q(electronic bk.)
020 $a0429150415$q(electronic bk.)
035 $a(OCoLC)213442382$z(OCoLC)438949755$z(OCoLC)502437515$z(OCoLC)648349185$z(OCoLC)779914986$z(OCoLC)1031054801$z(OCoLC)1065704882$z(OCoLC)1102531365$z(OCoLC)1260361262
037 $aTANDF_184658$bIngram Content Group
050 4 $aQA76.9.D3$bC64 2008eb
060 4 $aQA 76.9.D3
072 7 $aCOM$x084010$2bisacsh
072 7 $aCOM$x021000$2bisacsh
072 7 $aCOM$x030000$2bisacsh
082 04 $a005.74$222
084 $a54.72$2bcl
084 $a54.74$2bcl
084 $a*62P99$2msc
084 $a62-06$2msc
084 $a68-06$2msc
084 $a68P99$2msc
084 $a68U99$2msc
084 $aST 270$2rvk
084 $aST 530$2rvk
084 $aST 620$2rvk
084 $aZN 6030$2rvk
084 $aMAT 533f$2stub
049 $aZCUA
245 00 $aComputational methods of feature selection /$cedited by Huan Liu, Hiroshi Motoda.
260 $aBoca Raton :$bChapman & Hall/CRC,$c©2008.
300 $a1 online resource (419 pages) :$billustrations
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
490 1 $aChapman & Hall/CRC data mining and knowledge discovery series
504 $aIncludes bibliographical references and index.
588 0 $aPrint version record.
505 0 $aLess is more / Huan Liu and Hiroshi Motoda -- Unsupervised feature selection / Jennifer G. Dy -- Randomized feature selection / David J. Stracuzzi -- Causal feature selection / Isabelle Guyon, Constantin Aliferis, and André Elisseeff -- Active learning of feature relevance / Emanuele Olivetti, Sriharsha Veeramachaneni, and Paolo Avesani -- A study of feature extraction techniques based on decision border estimate / Claudia Diamantini and Domenico Potena -- Ensemble-based variable selection using independent probes / Eugene Tuv, Alexander Borisov, and Kari Torkkola -- Efficient incremental-ranked feature selection in massive data / Roberto Ruiz, Jesús S. Aguilar-Ruiz, and José C. Riquelme -- Non-myopic feature quality evaluation with (R)ReliefF / Igor Kononenko and Marko Robnik Šikonja -- Weighting method for feature selection in K-Means / Joshua Zhexue Huang [and others] -- Local feature selection for classification / Carlotta Domeniconi and Dimitrios Gunopulos -- Feature weighting through local learning / Yijun Sun -- Feature selection for text classification / George Forman -- A Bayesian feature selection score based on naïve bayes models / Susana Eyheramendy and David Madigan -- Pairwise constraints-guided dimensionality reduction / Wei Tang and Shi Zhong -- Aggressive feature selection by feature ranking / Masoud Makrehchi and Mohamed S. Kamel -- Feature selection for genomic data analysis / Lei Yu -- A feature generation algorithm with applications to biological sequence classification / Rezarta Islamaj Dogan, Lise Getoor, and W. John Wilbur -- An ensemble method for identifying robust features for biomarker discovery / Diana Chan, Susan M. Bridges, and Shane C. Burgess -- Model building and feature selection with genomic data / Hui Zou and Trevor Hastie.
520 $aFeature selection is an essential step for successful data mining applications and has practical significance in many areas, such as statistics, pattern recognition, machine learning, and knowledge discovery. This text covers the key concepts, representative approaches, and inventive applications of various aspects of feature selection.
650 0 $aDatabase management.
650 0 $aData mining.
650 0 $aMachine learning.
650 0 $aOrganization.
650 0 $aArtificial intelligence.
650 2 $aData Mining
650 2 $aDatabases as Topic
650 2 $aOrganization and Administration
650 2 $aArtificial Intelligence
650 6 $aBases de données$xGestion.
650 6 $aExploration de données (Informatique)
650 6 $aApprentissage automatique.
650 6 $aOrganisation.
650 6 $aIntelligence artificielle.
650 7 $aartificial intelligence.$2aat
650 7 $aCOMPUTERS$xDesktop Applications$xDatabases.$2bisacsh
650 7 $aCOMPUTERS$xDatabase Management$xGeneral.$2bisacsh
650 7 $aCOMPUTERS$xSystem Administration$xStorage & Retrieval.$2bisacsh
650 7 $aData mining.$2fast$0(OCoLC)fst00887946
650 7 $aDatabase management.$2fast$0(OCoLC)fst00888037
650 7 $aMachine learning.$2fast$0(OCoLC)fst01004795
655 4 $aElectronic books.
700 1 $aLiu, Huan,$d1958-
700 1 $aMotoda, Hiroshi.
776 08 $iPrint version:$tComputational methods of feature selection.$dBoca Raton : Chapman & Hall/CRC, ©2008$z9781584888789$z1584888784$w(DLC) 2007027465$w(OCoLC)154309055
830 0 $aChapman & Hall/CRC data mining and knowledge discovery series.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio15071485$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS