It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-031.mrc:90356561:9967
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-031.mrc:90356561:9967?format=raw

LEADER: 09967cam a2200709Ii 4500
001 15083168
005 20220627125747.0
006 m o d
007 cr un||||a|a||
008 111114s2010 flua ob 001 0 eng d
035 $a(OCoLC)ocn760931501
035 $a(NNC)15083168
040 $aOCLCE$beng$epn$cOCLCE$dOCLCQ$dOCLCF$dOCLCQ$dEBLCP$dOCLCQ$dYDXCP$dCRCPR$dOCLCQ$dOCLCO$dMERUC$dOCLCO$dORE$dN$T$dOCLCO$dNLE$dOCLCO$dAU@$dOCLCQ$dOTZ$dOCLCA$dTYFRS$dUKAHL$dOCLCQ$dK6U$dOCLCO$dELBRO$dOCLCO
019 $a908077626$a958837094
020 $a9781420073799$q(electronic bk.)
020 $a1420073796$q(electronic bk.)
020 $z9781420073782$q(alk. paper)
020 $z1420073788$q(alk. paper)
024 7 $a10.1201/b18849$2doi
035 $a(OCoLC)760931501$z(OCoLC)908077626$z(OCoLC)958837094
050 4 $aQH505$b.Z83 2010
060 00 $a2010 H-209
060 10 $aQT 34
072 7 $aSCI$x007000$2bisacsh
072 7 $aPHVN$2bicscc
082 04 $a572$222
049 $aZCUA
100 1 $aZuckerman, Daniel M.
245 10 $aStatistical physics of biomolecules :$ban introduction /$cDaniel M. Zuckerman.
260 $aBoca Raton, FL :$bCRC Press/Taylor & Francis,$c©2010.
300 $a1 online resource (xxi, 324 pages) :$billustrations
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
504 $aIncludes bibliographical references and index.
505 00 $gChapter 1.$tProteins Don't Know Biology --$tPrologue: Statistical Physics of Candy, Dirt, and Biology --$tGuiding Principles --$tAbout This Book --$tMolecular Prologue: A Day in the Life of Butane --$tWhat Does Equilibrium Mean to a Protein? --$tA Word on Experiments --$tMaking Movies: Basic Molecular Dynamics Simulation --$tBasic Protein Geometry --$tA Note on the Chapters --$gChapter 2.$tThe Heart of It All: Probability Theory --$tIntroduction --$tBasics of One-Dimensional Distributions --$tFluctuations and Error --$tTwo+ Dimensions: Projection and Correlation --$tSimple Statistics Help Reveal a Motor Protein's Mechanism --$tAdditional Problems: Trajectory Analysis --$gChapter 3.$tBig Lessons from Simple Systems: Equilibrium Statistical Mechanics in One Dimension --$tIntroduction --$tEnergy Landscapes Are Probability Distributions --$tStates, Not Configurations --$tFree Energy: It's Just Common Sense If You Believe in Probability --$tEntropy: It's Just a Name --$tSumming Up --$tMolecular Intuition from Simple Systems --$tLoose Ends: Proper Dimensions, Kinetic Energy --$gChapter 4.$tNature Doesn't Calculate Partition Functions: Elementary Dynamics and Equilibrium --$tIntroduction --$tNewtonian Dynamics: Deterministic but Not Predictable --$tBarrier Crossing--Activated Processes --$tFlux Balance: The Definition of Equilibrium --$tSimple Diffusion, Again --$tMore on Stochastic Dynamics: The Langevin Equation --$tKey Tools: The Correlation Time and Function --$tTying It All Together --$tSo Many Ways to ERR: Dynamics in Molecular Simulation --$tMini-Project: Double-Well Dynamics --$gChapter 5.$tMolecules Are Correlated! Multidimensional Statistical Mechanics --$tIntroduction --$tA More-Than-Two-Dimensional Prelude --$tCoordinates and Force Fields --$tThe Single-Molecule Partition Function --$tMultimolecular Systems --$tThe Free Energy Still Gives the Probability --$tSummary --$gChapter 6.$tFrom Complexity to Simplicity: The Potential of Mean Force --$tIntroduction: PMFs Are Everywhere --$tThe Potential of Mean Force Is Like a Free Energy --$tThe PMF May Not Yield the Reaction Rate or Transition State --$tThe Radial Distribution Function --$tPMFs Are the Typical Basis for "Knowledge-Based" ("Statistical") Potentials --$tSummary: The Meaning, Uses, and Limitations of the PMF --$gChapter 7.$tWhat's Free about "Free" Energy? Essential Thermodynamics --$tIntroduction --$tStatistical Thermodynamics: Can You Take a Derivative? --$tYou Love the Ideal Gas --$tBoring but True: The First Law Describes Energy Conservation --$tG vs. F: Other Free Energies and Why They (Sort of ) Matter --$tOverview of Free Energies and Derivatives --$tThe Second Law and (Sometimes) Free Energy Minimization --$tCalorimetry: A Key Thermodynamic Technique --$tThe Bare-Bones Essentials of Thermodynamics --$tKey Topics Omitted from This Chapter --$gChapter 8.$tThe Most Important Molecule: Electro-Statistics of Water --$tBasics of Water Structure --$tWater Molecules Are Structural Elements in Many Crystal Structures --$tThe pH of Water and Acid-Base Ideas --$tHydrophobic Effect --$tWater Is a Strong Dielectric --$tCharges in Water + Salt = Screening --$tA Brief Word on Solubility --$tSummary --$tAdditional Problem: Understanding Differential Electrostatics --$gChapter 9.$tBasics of Binding and Allostery --$tA Dynamical View of Binding: On- and Off-Rates --$tMacroscopic Equilibrium and the Binding Constant --$tA Structural-Thermodynamic View of Binding --$tUnderstanding Relative Affinities: ∆∆G and Thermodynamic Cycles --$tEnergy Storage in "Fuels" Like ATP --$tDirect Statistical Mechanics Description of Binding --$tAllostery and Cooperativity --$tElementary Enzymatic Catalysis --$tpH AND pKa --$tSummary --$gChapter 10.$tKinetics of Conformational Change and Protein Folding --$tIntroduction: Basins, Substates, and States --$tKinetic Analysis of Multistate Systems --$tConformational and Allosteric Changes in Proteins --$tProtein Folding --$tSummary --$gChapter 11.$tEnsemble Dynamics: From Trajectories to Diffusion and Kinetics --$tIntroduction: Back to Trajectories and Ensembles --$tOne-Dimensional Ensemble Dynamics --$tFour Key Trajectory Ensembles --$tFrom Trajectory Ensembles to Observables --$tDiffusion and Beyond: Evolving Probability Distributions --$tThe Jarzynski Relation and Single-Molecule Phenomena --$tSummary --$gChapter 12.$tA Statistical Perspective on Biomolecular Simulation --$tIntroduction: Ideas, Not Recipes --$tFirst, Choose Your Model: Detailed or Simplified --$t"Basic" Simulations Emulate Dynamics --$tMetropolis Monte Carlo: A Basic Method and Variations --$tAnother Basic Method: Reweighting and Its Variations --$tDiscrete-State Simulations --$tHow to Judge Equilibrium Simulation Quality --$tFree Energy and PMF Calculations --$tPath Ensembles: Sampling Trajectories --$tProtein Folding: Dynamics and Structure Prediction --$tSummary --$tIndex.
588 0 $aPrint version record.
520 $aProteins Don't Know BiologyPrologue: Statistical Physics of Candy, Dirt, and Biology Guiding Principles About This Book Molecular Prologue: A Day in the Life of Butane What Does Equilibrium Mean to a Protein? A Word on Experiments Making Movies: Basic Molecular Dynamics Simulation Basic Protein Geometry A Note on the Chapters The Heart of It All: Probability Theory Introduction Basics of One-Dimensional Distributions Fluctuations and Error Two+ Dimensions: Projection and Correlation Simple Statistics Help Reveal a Motor Protein's Mechanism Additional Problems: Trajectory Analysis Big Lessons from Simple Systems: Equilibrium Statistical Mechanics in One DimensionIntroduction Energy Landscapes Are Probability Distributions States, Not Configurations Free Energy: It's Just Common Sense If You Believe in Probability Entropy: It's Just a Name Summing Up Molecular Intuition from Simple Systems Loose Ends: Proper Dimensions, Kinetic Energy Nature Doesn't Calculate Partition Functions: Elementary Dynamics and Equilibrium Introduction Newtonian Dynamics: Deterministic but Not Predictable Barrier Crossing-Activated Processes Flux Balance: The Definition of Equilibrium Simple Diffusion, Again More on Stochastic Dynamics: The Langevin Equation Key Tools: The Correlation Time and Function Tying It All Together So Many Ways to ERR: Dynamics in Molecular Simulation Mini-Project: Double-Well Dynamics Molecules Are Correlated! Multidimensional Statistical Mechanics Introduction A More-Than-Two-Dimensional Prelude Coordinates and Force Fields The Single-Molecule Partition Function Multimolecular Systems The Free Energy Still Gives the Probability Summary From Complexity to Simplicity: The Potential of Mean Force Introduction: PMFs Are Everywhere The Potential of Mean Force Is Like a Free Energy The PMF May Not Yield the Reaction Rate or Transition State The Radial.
520 8 $aProbability Distributions The Jarzynski Relation and Single-Molecule Phenomena Summary A Statistical Perspective on Biomolecular Simulation Introduction: Ideas, Not Recipes First, Choose Your Model: Detailed or Simplified "Basic" Simulations Emulate Dynamics Metropolis Monte Carlo: A Basic Method and Variations Another Basic Method: Reweighting and Its Variations Discrete-State Simulations How to Judge Equilibrium Simulation Quality Free Energy and PMF Calculations Path Ensembles: Sampling Trajectories Protein Folding: Dynamics and Structure Prediction Summary Index.
650 0 $aBiophysics.
650 0 $aStatistical physics.
650 0 $aBiomolecules.
650 0 $aBioinformatics.
650 0 $aComputational biology.
650 0 $aStatistics.
650 12 $aBiophysics
650 22 $aComputational Biology
650 22 $aStatistics as Topic
650 6 $aBiophysique.
650 6 $aPhysique statistique.
650 6 $aBiomolécules.
650 6 $aBio-informatique.
650 6 $aStatistiques.
650 7 $aSCIENCE$xLife Sciences$xBiochemistry.$2bisacsh
650 7 $aBiomolecules.$2fast$0(OCoLC)fst00832624
650 7 $aBiophysics.$2fast$0(OCoLC)fst00832656
650 7 $aStatistical physics.$2fast$0(OCoLC)fst01132076
655 0 $aElectronic books.
655 4 $aElectronic books.
776 08 $iPrint version:$aZuckerman, Daniel M.$tStatistical physics of biomolecules.$dBoca Raton, FL : CRC Press/Taylor & Francis, ©2010$w(DLC) 2009050600$w(OCoLC)473479036
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio15083168$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS