Record ID | marc_columbia/Columbia-extract-20221130-032.mrc:137576897:11516 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-032.mrc:137576897:11516?format=raw |
LEADER: 11516cam a2200493M 4500
001 15806548
005 20220423224609.0
006 m o d
007 cr unu||||||||
008 210616s2020 xx o ||| 0 und d
035 $a(OCoLC)on1257870275
035 $a(NNC)15806548
040 $aLVT$beng$cLVT$dESU$dOCLCO$dOCLCF$dYDX$dOCLCO
020 0 $a9788770221368
020 $a8770221367
020 0 $a9788770221351$q(online)
020 $a8770221359
035 $a(OCoLC)1257870275
050 00 $aR
082 04 $a620.1/92$223
049 $aZCUA
100 1 $aSabu Thomas.
245 10 $aAdvanced Polymeric Systems: Applications in Nanostructured Materials, Composites and Biomedical Fields$h[electronic resource].
260 $bRiver Publishers$c2020.
300 $a1 online resource
505 0 $aPreface xiii -- List of Contributors xvii -- List of Figures xxi -- List of Tables xxvii -- List of Abbreviations xxix -- I Nanostructured Materials for Energy Applications 1 -- 1 Smart Nano-Enhanced Organic Phase Change Materials for Thermal Energy Storage Applications 3 / Swati Sundararajan and Asit B. Samui -- 1.1 Introduction 4 -- 1.1.1 Types of PCM 6 -- 1.1.2 Physical Form of PCM 7 -- 1.2 Inorganic Nanocomposites 8 -- 1.3 Metallic Nanoparticles 9 -- 1.4 Carbon Nanocomposites 11 -- 1.4.1 Carbon Fibre 13 -- 1.4.2 Carbon Nanospheres (CNS) 13 -- 1.4.3 Carbon Nanotubes (CNT) 13 -- 1.4.4 Multiwall Carbon Nanotubes (MWCNT) 15 -- 1.4.5 Single-walled Carbon Nanotubes (SWCNT) 15 -- 1.5 Graphene Nanocomposites 16 -- 1.5.1 Graphene Oxide (GO) and Derivatives 16 -- 1.5.2 Graphene Aerogels (GA) 18 -- 1.5.3 Expanded Graphite (EG) 18 -- 1.5.4 Graphene Nanoplatelets (GNPs) 19 -- 1.5.5 Graphite Foam (GF) 21 -- 1.6 Conclusions 21 References 22 -- 2 Fabrication of Natural Dye-Sensitised Solar Cells Based on Quasi Solid State Electrolyte Using TiO2 Nanocomposites 31 N. Suganya, G. Hari Hara Priya and V. Jaisankar 2.1 Introduction 32 -- 2.2 Experimental 33 -- 2.2.1 Materials 33 -- 2.2.2 Methods 33 -- 2.2.2.1 Preparation of nano-TiO2, nano-ZnO and nano-CuO 33 -- 2.2.2.2 Preparation of TiO2/ZnO and TiO2/CuO Core/Shell nanomaterials 34 -- 2.2.3 Fabrication of DSSC Electrodes 34 -- 2.2.3.1 Preparation of photoanode 34 -- 2.2.3.2 Preparation of gel polymer electrolyte 35 -- 2.2.3.3 Preparation of natural dye sensitiser 35 -- 2.2.3.4 Preparation of counter electrode 35 -- 2.2.3.5 Cell assembly 35 -- 2.2.4 Characterisation Methods 36 -- 2.3 Results and Discussion 36 -- 2.3.1 UV-Visible Spectroscopy 36 -- 2.3.2 Fourier-Transform Infrared (FTIR) Spectroscopy 37 -- 2.3.3 Scanning Electron Microscopy (SEM) 38 -- 2.3.4 Energy Dispersive Spectroscopy (EDS) 38 -- 2.3.5 Electrochemical Impedance of Gel Polymer Electrolyte 38 -- 2.3.6 Current Voltage Characteristics 38 -- 2.4 Conclusion 42 Acknowledgements 42 References 42.
505 8 $aII Nanostructured Polymer Composites 69 -- 4 Effect of Nanosilica Concentration on the Mechanical, Viscoelastic and Morphological Properties of Polypropylene/Styrene-Ethylene/Butylene-Styrene Blend 71 Harekrishna Panigrahi, Smrutirekha Mishra, Avinash Nath Tiwari and M. P. Singh 4.1 Introduction 72 -- 4.2 Experimental Part 74 -- 4.2.1 Materials Used 74 -- 4.2.2 Preparation of Nanocomposites 75 -- 4.2.3 Characterisation 75 -- 4.2.3.1 Mechanical properties 75 -- 4.2.3.2 Viscoelastic properties 75 -- 4.2.3.3 Morphological properties 76 -- 4.3 Results and Discussion 76 -- 4.3.1 Tensile Stress-Strain Studies 76 -- 4.3.2 Dynamic Mechanical Analysis (DMA) 78 -- 4.3.3 High-resolution Transmission Electron Microscopy (HRTEM) 79 -- 4.4 Conclusion 81 References 81 -- 5 Comparative Approach to Structural Heterogeneity of Polyaniline and Its ZnO Nanocomposites 85 Bhabhina Ninnora Meethal, P. C. Ajisha, Dharsana M. Vidyadharan, Jyothilakshmi V. Prakasan and Sindhu Swaminathan 5.1 Introduction 86 -- 5.2 Experimental 87 -- 5.2.1 Synthesis of Polyaniline and Its ZnO Nanocomposites 87 -- 5.2.2 Photocatalysis 87 -- 5.2.3 Quantification of Hydroxyl Radicals from Nanocomposites 88 -- 5.3 Results and Discussions 88 -- 5.4 Conclusions 97 Acknowledgements 97 References 98 III Bio-polymers 101 -- 6 Synthesis and Characterisation of Polyurethanes from Bio-Based Vegetable Oil 103 D. Venkatesh and V. Jaisankar 6.1 Introduction 103 -- 6.2 Materials and Method 104 -- 6.2.1 Synthesis of the Epoxidised Vegetable Oil 105 -- 6.2.2 Synthesis of Castor Oil Fatty Acid 105 -- 6.2.3 Synthesis of Vegetable Oil-Based Polyol 105 -- 6.2.4 Preparation of Polyurethanes 105 -- 6.3 Characterisation 106 -- 6.4 Result and Discussion 106 -- 6.4.1 Infrared Spectroscopy 106 -- 6.4.2 Proton (1H) Nuclear Magnetic Resonance Spectroscopy 107 -- 6.4.3 Thermal Analysis 108 -- 6.5 Conclusions 110 References 110 -- 7 Application of Lepidium sativum as an Excipient in Pharmaceuticals 113 S. V. Sutar, S. S. Shelake, S. V. Patil and S. S. Patil 7.1 Introduction 114.
505 8 $a8 Role of Polyhydroxyalkanoates (PHA-biodegradable Polymer) in Food Packaging 135 / Abhishek Dutt Tripathi, Simmie Sebstraien, Kamlesh Kumar Maurya, Suresh Kumar Srivastava, Shankar Khade and Kundan -- 8.1 Introduction 135 -- 8.2 Production 139 -- 8.3 Characterisation and Identification 145 -- 8.3.1 Spectrophotometric Methods 145 -- 8.3.2 Infrared Spectroscopy 146 -- 8.3.3 High-Performance Liquid Chromatography (HPLC) 147 -- 8.3.4 Gas Chromatography-Mass Spectrometry (GC-MS) 147 -- 8.3.5 NMR Spectroscopy 147 -- 8.3.6 Flow cytometry and Spectrofluorometry 147 -- 8.3.7 Staining Reactions and Microscopy 148 -- 8.4 Extraction and Recovery 149 -- 8.4.1 Using Chloroform and Sodium Hypochlorite 149 -- 8.4.2 Using Surfactant and Chelating Agents 150 -- 8.4.3 Using Alkali 150 -- 8.4.4 Using Enzymes 151 -- 8.4.5 Using Microbial Method of Extraction 151 -- 8.4.6 Purification of Biopolymers 152 -- 8.4.7 Application of Biopolymers in Food Packaging 155 -- 8.5 Biodegradability 159 -- 8.5.1 Enzymatic Degradability 160 -- 8.5.2 Versions and Title of Standard Testing Methods for Determining Biodegradability of Materials in Soil 162 -- 8.5.3 American Society for Testing and Materials International (ASTM) 162 -- 8.5.4 French and Italian Normalisation Organisations (AFNOR, UNI) 162 -- 8.5.5 OECD Guidelines 163 -- 8.6 Challenges and Opportunity 163 References 163 -- 9 Xylitol: Fermentative Production and Statistical Optimization Using Novel Isolates of Candida parapsilosis Strain BKR1 in the Indigenously Designed Multiphase Reactor 175 / Balakrishnaraja Rengaraju, D. Vinotha and P. Ramalingam 9.1 Introduction 176 -- 9.2 Fermentation and Statistical Optimization 177 -- 9.2.1 Plackett-Burman (PB) Experimental Design 178 -- 9.2.2 Response Surface Methodology 179 -- 9.2.3 Model Fitting and Statistical Analysis 179 -- 9.2.4 Validation of the Experimental Model 184 -- 9.3 Conclusion 187 Acknowledgements 188 References 188 IV Nanostructured Polymers for Biomedical Applications 191 -- 10 Self-assembled Nanostructures of Polysaccharides for Therapeutics 193 V. S. Prasad, Aarsha Surendren, P. Anju, Asha Susan Chacko and Sumesh Soman 10.1 Introduction 194.
505 8 $a3 Implementing ZnO Nanomaterials in P3HT:PCBM Based Hybrid Solar Cell 45 R. Geethu, K. S. Ranjith, R. T. Rajendra Kumar and K. P. Vijayakumar 3.1 Introduction 46 -- 3.2 Vertically Well-aligned ZnO Nanorods and Its Solar Cell Application 47 -- 3.2.1 Seed Layer Deposition 48 -- 3.2.2 Growth of Vertically Well-aligned ZnO Nanorod 51 -- 3.2.2.1 Role of seed layer deposition temperature on the growth of vertically aligned ZnO nanorods 51 -- 3.2.2.2 Role of pH, Zn precursor concentration for the growth of vertically aligned ZnO nanorod arrays 53 -- 3.2.3 Hybrid Solar Cell Fabrication Using ZnO Nanorods 54 -- 3.2.3.1 Organic layer deposition 54 -- 3.2.3.2 Top electrode deposition 55 -- 3.2.3.3 Device characterisation 56 -- 3.3 Tangled Nano- and Micro-Root Structure for Photovoltaic Application 61 -- 3.4 Conclusion 64 -- References 64.
505 8 $a7.2 Material and Methods 116 -- 7.2.1 Materials 116 -- 7.2.2 Methods of Formulation 116 -- 7.2.3 Experimental Work 119 -- 7.3 Result and Discussion 123 -- 7.4 -- Conclusions 132 -- References 132.
505 8 $a10.2 Polysaccharides for Drug Delivery 198 -- 10.3 Self-assembled Nanostructures 199 -- 10.3.1 Micelles 199 -- 10.3.2 Vesicles 199 -- 10.3.3 Giant Vesicles 201 -- 10.4 Other Polysaccharides Used in Drug Delivery 201 -- 10.4.1 Dextrin 201 -- 10.4.2 Chitosan 202 -- 10.4.3 Alginates 204 -- 10.4.4 Gellan Gum 205 -- 10.4.5 Xanthan Gum 205 -- 10.4.6 Pullulan 206 -- 10.4.7 Cellulose 206 -- 10.5 Nanocellulose for Drug Delivery 206 -- 10.6 Synthesis of Giant Vesicles from Nanocellulose 207 -- 10.7 Conclusions 208 References 208 -- 11 Antimicrobial Effects of Biosynthesised Silver Nanoparticles Using Pimenta Dioica Leaf Extract 217 Reshma R. Pillai, P. B. Sreelekshmi and A. P. Meera 11.1 Introduction 217 -- 11.2 Experimental 219 -- 11.2.1 Materials Used 219 -- 11.2.1.1 Preparation of the leaf extract 219 -- 11.2.1.2 Synthesis of silver nanoparticles 220 -- 11.2.2 Characterisation Techniques of Nanoparticles 220 -- 11.2.2.1 Fourier transforms infrared spectroscopy (FTIR) 220 -- 11.2.2.2 UV-visible spectroscopy 220 -- 11.2.2.3 Morphological analysis 221 -- 11.2.3 Biological Activity of the Nanoparticles 221 -- 11.2.3.1 Antibacterial activity 221 -- 11.2.3.2 Antifungal activity 222 -- 11.3 Results and Discussion 222 -- 11.3.1 Characterisation of Silver Nanoparticles 222 -- 11.3.1.1 UV-visible spectroscopy 222 -- 11.3.1.2 FT-IR spectral studies 222 -- 11.3.2 Morphological Analysis 223 -- 11.3.2.1 Scanning electron microscopy (SEM) 223 -- 11.3.2.2 Transmission electron microscopy (TEM) 224 -- 11.3.3 Biological Activity of the Complexes 224 -- 11.4 Conclusions 227 -- Acknowledgements 227 -- References 227 -- Index 229 -- About the Editors 231.
520 $aOver recent years a considerable amount of effort has been devoted, both in industry and academia, towards the incorporation of various macro, micro and nano sized fillers into polymers. There is also much interest in the evaluation of various polymer properties with respect to a wide set of applications. The advances in nanotechnology together with the development in material sciences has improved the shortcomings of these materials over the decade. This book covers the latest advances in the field of polymer nanocomposites and polymer composites for varied applications. The major topics discussed in the book include: * Nanostructured materials for energy applications * Nanostructured polymercomposites * Bio-polymers * Nanostructured polymers for biomedical applications The book contains extended and updated research papers that were initially selected for the ICAMP-2017 conference which focused on advances in polymer materials. The book is ideal for researchers and practitioners in polymer science and materials science as well as for graduate students in polymer chemistry, materials science, nanotechnology and biomedical engineering.
650 0 $aPolymeric composites$xIndustrial applications. 1.
650 0 $aPolymeric composites.
650 6 $aComposites polymères.
650 7 $aPolymeric composites.$2fast$0(OCoLC)fst01070558
655 0 $aElectronic books.
700 1 $aNandakumar Kalarikkal.
700 1 $aSandhya Gopalakrishnan.
700 1 $aIndu Raj.
700 1 $aPraveen K. M.
700 1 $aRouxel, Didier.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio15806548$zACADEMIC - Plastics & Rubber
852 8 $blweb$hEBOOKS