It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-033.mrc:25884796:3891
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-033.mrc:25884796:3891?format=raw

LEADER: 03891cam a2200553 i 4500
001 16076959
005 20220517205748.0
008 210601s2020 cc b 001 0 eng d
024 $a99990486808
035 $a(OCoLC)on1253353751
040 $aYDX$beng$erda$cYDX$dUIU$dOCLCO$dOCLCF$dIPS$dOCLCQ
020 $a9787040533750$q(hardback)
020 $a7040533758$q(hardback)
035 $a(OCoLC)1253353751
041 1 $aeng$hfre$hger
050 4 $aQA243$b.A75 2020
082 04 $a512.74$223
245 00 $aArithmetic groups and reduction theory /$cArmand Borel, Roger Godement, Carl Ludwig Siegel, André Weil; edited by Lizhen Ji; translated by Wolfgang Globke, Lizhen Ji, Enrico Leuzinger, Andreas Weber.
264 1 $aBeijing :$bHigher Education Press,$c[2020]
264 4 $c©2020
300 $aiv, 138 pages ;$c25 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aClassical topics in mathematics ;$v10
504 $aIncludes bibliographical references and index.
505 00 $tOn the reduction theory of quadratic forms /$rCarl Ludwig Siegel, translated by Wolfgang Globke and Andreas Weber --$tReduction of quadratic Forms, according to Minkowski and Siegel /$rAndré Weil, Translated by Lizhen Ji --$tGroups of indefinite quadratic forms and alternating bilinear forms /$rAndré Weil, Translated by Lizhen Ji --$tDiscontinuous subgroups of classical groups /$rAndré Weil --$tFundamental sets for arithmetic groups /$rArmand Borel, translated by Lizhen Ji --$tFundamental domains of arithmetic groups /$rRoger Godement, Translated by Enrico Leuzinger.
520 $a"Arithmetic subgroups of Lie groups are a natural generalization of SL(n,Z) in SL(n,R) and play an important role in the theory of automorphic forms and the theory of moduli spaces in algebraic geometry and number theory through locally symmetric spaces associated with arithmetic subgroups. One key component in the theory of arithmetic subgroups is the reduction theory which started with the work of Gauss on quadratic forms. This book consists of papers and lecture notes of four great contributors of the reduction theory: Armand Borel, Roger Godement, Carl Ludwig Siegel and André Weil. They reflect their deep knowledge of the subject and their perspectives. The lecture notes of Weil are published formally for the first time, and other papers are translated into English for the first time. " - publisher
546 $aIn English. Translated from the French and German.
650 0 $aArithmetic groups.
650 0 $aForms, Quadratic.
650 7 $aArithmetic groups.$2fast$0(OCoLC)fst00814524
650 7 $aForms, Quadratic.$2fast$0(OCoLC)fst00932985
700 1 $aBorel, Armand,$eauthor.
700 1 $aGodement, Roger,$eauthor.
700 1 $aSiegel, C. L.$q(Carl Ludwig),$d1896-1981,$eauthor.
700 1 $aWeil, André,$d1906-1998,$eauthor.
700 1 $aJi, Lizhen,$d1964-$eeditor,$etranslator.
700 1 $aGlobke, Wolfgang,$etranslator.
700 1 $aLeuzinger, Enrico,$etranslator.
700 1 $aWeber, Andreas,$d1961 December 24-$etranslator.
700 1 $aBorel, Armand.$tEnsembles fondamentaux pour les groupes arithmétiques.$lEnglish.
700 1 $aGodement, Roger.$tDomaines fondamentaux des groupes arithmétiques.$lEnglish.
700 1 $aSiegel, C. L.$q(Carl Ludwig),$d1896-1981.$tZur Reduktionstheorie Quadratischer Formen.$lEnglish.
700 1 $aWeil, André,$d1906-1998.$tRéduction des formes quadratiques, d'aprés Minkowski et Siegel.$lEnglish.
700 1 $aWeil, André,$d1906-1998.$tGroupes des formes quadratiques indéfinies et des formes bilinéaires alternées.$lEnglish.
700 1 $aWeil, André,$d1906-1998.$tDiscontinuous subgroups of classical groups.
830 0 $aClassical topics in mathematics ;$v10.
852 00 $bmat$hQA243$i.A75 2020g