It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-033.mrc:463894002:3478
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-033.mrc:463894002:3478?format=raw

LEADER: 03478cam a2200661Ii 4500
001 16273034
005 20220625225703.0
006 m o d
007 cr |n|||||||||
008 080823s2008 sz a ob 001 0 eng d
035 $a(OCoLC)ocn785777632
035 $a(NNC)16273034
040 $aCOO$beng$erda$cCOO$dOCLCQ$dOCLCF$dOCLCO$dOCLCQ$dNOC$dLLB$dOCLCQ$dSTF$dINT$dOCLCQ$dN$T$dYDX$dUKQUB$dOCLCO
019 $a1233305093
020 $a303719541X$qelectronic book
020 $a9783037195413$qelectronic book
020 $z9783037190418
020 $z3037190418
024 70 $a10.4171/041$2doi
035 $a(OCoLC)785777632$z(OCoLC)1233305093
041 1 $aeng$hrus
050 14 $aQA174.2$b.B64 2008
072 7 $aPBFD$2bicssc
072 7 $aMAT$x002040$2bisacsh
082 04 $a512/.2$223
084 $a20-xx$2msc
049 $aZCUA
100 1 $aBogopolʹskij, Oleg Vladimirovič$eauthor.
240 10 $aVvedenie v teorii︠u︡ grupp.$lEnglish
245 10 $aIntroduction to group theory /$cOleg Bogopolski.
264 1 $aZürich, Switzerland :$bEuropean Mathematical Society,$c©2008.
300 $a1 online resource (x, 177 pages) :$billustrations.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aEMS textbooks in mathematics
500 $a"Originally published by Institute of Computer Sciuence, Moscow-Izhevsk, 2002, under the title: Vvedenie v teorii︠u︡ grupp."
500 $a"English edition differs from the Russian original by the addition of a new Chapter 3."
504 $aIncludes bibliographical references (pages 169-172) and index.
520 $aThis book quickly introduces beginners to general group theory and then focuses on three main themes: finite group theory, including sporadic groups; combinatorial and geometric group theory, including the Bass-Serre theory of groups acting on trees; the theory of train tracks by Bestvina and Handel for automorphisms of free groups. With its many examples, exercises, and full solutions to selected exercises, this text provides a gentle introduction that is ideal for self-study and an excellent preparation for applications. A distinguished feature of the presentation is that algebraic and geometric techniques are balanced. The beautiful theory of train tracks is illustrated by two nontrivial examples. Presupposing only a basic knowledge of algebra, the book is addressed to anyone interested in group theory: from advanced undergraduate and graduate students to specialists.
588 $aDescription based upon online resource; title from PDF title page (viewed July 06, 2020).
650 0 $aGroup theory.
650 0 $aFinite groups.
650 0 $aCombinatorial group theory.
650 6 $aThéorie des groupes.
650 6 $aGroupes finis.
650 6 $aThéorie combinatoire des groupes.
650 07 $aGroups & group theory.$2bicssc
650 7 $aMATHEMATICS / Algebra / Intermediate$2bisacsh
650 7 $aCombinatorial group theory.$2fast$0(OCoLC)fst00868974
650 7 $aFinite groups.$2fast$0(OCoLC)fst00924908
650 7 $aGroup theory.$2fast$0(OCoLC)fst00948521
650 07 $aGroup theory and generalizations.$2msc
655 4 $aElectronic books.
830 0 $aEMS textbooks in mathematics.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio16273034$zAll EBSCO eBooks
852 8 $blweb$hEBOOKS