Record ID | marc_columbia/Columbia-extract-20221130-033.mrc:463997340:3036 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-033.mrc:463997340:3036?format=raw |
LEADER: 03036cam a2200541Ma 4500
001 16273064
005 20220528225644.0
006 m o d
007 cr nn||||mamaa
008 091109e20071121sz fot 000 0 eng d
035 $a(OCoLC)on1030572331
035 $a(NNC)16273064
040 $aSTF$beng$cSTF$dOCLCQ$dN$T$dOCLCF$dOCLCO
020 $a3037195428
020 $a9783037195420$q(electronic bk.)
024 70 $a10.4171/042$2doi
035 $a(OCoLC)1030572331
050 4 $aQA324
072 7 $aPBKJ$2bicssc
082 04 $a515.782$222
084 $a35-xx$a46-xx$2msc
049 $aZCUA
100 1 $aHaroske, Dorothee D.,$eauthor.
245 10 $aDistributions, Sobolev Spaces, Elliptic Equations /$cDorothee D. Haroske, Hans Triebel.
260 3 $aZuerich, Switzerland :$bEuropean Mathematical Society Publishing House,$c2007.
300 $a1 online resource (303 pages).
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 0 $aEMS Textbooks in Mathematics (ETB)
520 $aIt is the main aim of this book to develop at an accessible, moderate level an L2 theory for elliptic differential operators of second order on bounded smooth domains in Euclidean n-space, including a priori estimates for boundary-value problems in terms of (fractional) Sobolev spaces on domains and on their boundaries, together with a related spectral theory. The presentation is preceded by an introduction to the classical theory for the Laplace-Poisson equation, and some chapters providing required ingredients such as the theory of distributions, Sobolev spaces and the spectral theory in Hilbert spaces. The book grew out of two-semester courses the authors have given several times over a period of ten years at the Friedrich Schiller University of Jena. It is addressed to graduate students and mathematicians who have a working knowledge of calculus, measure theory and the basic elements of functional analysis (as usually covered by undergraduate courses) and who are seeking an accessible introduction to some aspects of the theory of function spaces and its applications to elliptic equations.
650 0 $aTheory of distributions (Functional analysis)
650 0 $aSobolev spaces.
650 0 $aElliptic operators.
650 6 $aThéorie des distributions (Analyse fonctionnelle)
650 6 $aEspaces de Sobolev.
650 6 $aOpérateurs elliptiques.
650 07 $aDifferential equations.$2bicssc
650 7 $aElliptic operators.$2fast$0(OCoLC)fst00908174
650 7 $aSobolev spaces.$2fast$0(OCoLC)fst01122115
650 7 $aTheory of distributions (Functional analysis)$2fast$0(OCoLC)fst01149672
650 07 $aPartial differential equations.$2msc
650 07 $aFunctional analysis.$2msc
655 4 $aElectronic books.
700 1 $aTriebel, Hans,$eauthor.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio16273064$zAll EBSCO eBooks
852 8 $blweb$hEBOOKS