Record ID | marc_columbia/Columbia-extract-20221130-034.mrc:1012134:6046 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-034.mrc:1012134:6046?format=raw |
LEADER: 06046cam a2200577Mi 4500
001 16610285
005 20220625224451.0
006 m eo d
007 cr bn||||m|||a
008 190522t20192019wau ob 001 0 eng d
035 $a(OCoLC)on1102344162
035 $a(NNC)16610285
040 $aSPIES$beng$erda$cSPIES$dOCLCO$dOCLCQ$dOCL$dUIU$dUPM$dOCLCO
020 $a9781510625402$q(PDF)
020 $a1510625402$q(PDF)
020 $z9781510625396$q(hard cover ;$qalk. paper)
020 $z9781510625419$q(ePub)
020 $z1510625410$q(ePub)
020 $z9781510625426$q(Kindle/Mobi)
020 $z1510625429$q(Kindle/Mobi)
024 7 $a10.1117/3.2518254$2doi
035 $a(OCoLC)1102344162
050 4 $aTK6592.O6$bM36 2019
082 04 $a621.3848$223
049 $aZCUA
100 1 $aMcManamon, Paul F.,$d1946-$eauthor.
245 10 $aLiDAR technologies and systems /$cPaul McManamon.
264 1 $aBellingham, Washington (1000 20th St. Bellingham WA 98225-6705 USA) :$bSPIE,$c2019.
264 4 $c©2019
300 $a1 online resource (520 pages)
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
490 1 $aSPIE Press monograph ;$vPM300
504 $aIncludes bibliographical references and index.
505 0 $aPreface -- 1. Introduction to LiDAR: 1.1. Context of LiDAR; 1.2. Conceptual discussion of LiDAR; 1.3. Terms for active EO sensing; 1.4. Types of LiDARs; 1.5. LiDAR detection modes; 1.6. Flash LiDAR versus scanning LiDAR; 1.7. Eye safety considerations; 1.8. Laser safety categories; 1.9. Monostatic versus bistatic LiDAR; 1.10. Transmit/receive isolation; 1.11. Major devices in a LiDAR; 1.12. Organization of the book; Problems and solutions; References -- 2. History of LiDAR: 2.1. Rangefinders, altimeters, and designators; 2.2. Early coherent LiDARs; 2.3. Early space-based LiDAR; 2.4. Flight-based Laser Vibrometers; 2.5. Environmental LiDARs; 2.6. Imaging LiDARs; 2.7. History conclusion; References -- 3. LiDAR range equation: 3.1. Introduction to the LiDAR range equation; 3.2. Illuminator beam; 3.3. LiDAR cross-section; 3.4. Link budget range equation; 3.5. Atmospheric effects; Problems and solutions; Notes and references -- 4. Types of LiDAR: 4.1. Direct-detection LiDAR; 4.2. Coherent LiDAR; 4.3. Multiple-input, multiple-output active EO sensing; Appendix 4.1. MATLAB® program showing synthetic-aperture pupil planes and MTFs; Problems and solutions; References -- 5. LiDAR sources and modulations: 5.1. Laser background discussion; 5.2. Laser waveforms for LiDAR; 5.3. Lasers used in LiDAR; 5.4. Bulk solid state lasers for LiDAR; 5.5. Fiber format; Problems and solutions; References
505 8 $a6. LiDAR receivers: 6.1. Introduction to LiDAR receivers; 6.2. LiDAR signal-to-noise ratio; 6.3. Avalanche photodiodes and direct detection; 6.4. Silicon detectors; 6.5. Heterodyne detection; 6.6. Long-frame-time framing detectors for LiDAR; 6.7. Ghost LiDARs; 6.8. LiDAR image stabilization; 6.9. Optical-time-of-flight flash LiDAR; Problems and solutions; Notes and references -- 7. LiDAR beam steering and optics: 7.1. Mechanical beam-steering approaches for LiDAR; 7.2. Nonmechanical beam-steering approaches for steering LiDAR optical beams; 7.3. Some optical design considerations for LiDAR; Problems and solutions; Notes and references -- 8. LiDAR processing: 8.1. Introduction; 8.2. Generating LiDAR images/information; Problems and solutions; References -- 9. Figures of merit, testing, and calibration for LiDAR: 9.1. Introduction; 9.2. LiDAR characterization and figures of merit; 9.3. LiDAR testing; 9.4. LiDAR calibration; Problems and solutions; References
505 8 $a10. LiDAR performance metrics: 10.1. Image quality metrics; 10.2. LiDAR parameters; 10.3. Image parameters: National Imagery Interpretability Rating Scale (NIIRS); 10.4. 3D metrics for LiDAR images; 10.5. General image quality equations; 10.6. Quality metrics associated with automatic target detection, recognition, or identification; 10.7. Information theory related to image quality metrics; 10.8. Image quality metrics based on alternative basis sets; 10.9. Eigenmodes; 10.10. Compressive sensing; 10.11. Machine learning; 10.12. Processing to obtain imagery; 10.13. Range resolution in EO/IR imagers; 10.14. Current LiDAR metric standards; 10.15. Conclusion; Appendix 10-1. MATLAB code to Fourier transform an image; Problems and solutions; References -- 11. Significant applications of LiDAR: 11.1. Auto LiDAR; 11.2. 3D mapping LiDAR; 11.3. Laser vibrometers; 11.4. Wind sensing; Problems and solutions; References -- Index.
520 $aLiDAR is one of many active sensor technologies that uses electromagnetic radiation. Operating in the optical and infrared wavelengths, it is similar to more-familiar passive EO/IR sensor technology. It is also similar to radar in that it uses reflected electromagnetic radiation emitted by the sensor. LiDAR is commonly used for making high-resolution maps and has applications in geodesy, geomatics, archaeology, geography, geology, geomorphology, seismology, forestry, atmospheric physics, laser guidance, airborne laser swath mapping, and laser altimetry. It is also being used for control and navigation of some autonomous cars.
500 $aTitle from PDF title page (SPIE eBooks Website, viewed 2019-05-22).
650 0 $aOptical radar.
650 6 $aLidar.
650 7 $aOptical radar.$2fast$0(OCoLC)fst01046796
655 0 $aElectronic books.
655 4 $aElectronic books.
710 2 $aSociety of Photo-optical Instrumentation Engineers,$epublisher.
776 08 $iPrint version:$z1510625399$z9781510625396$w(DLC) 2018053788
830 0 $aSPIE Press monograph ;$vPM300.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio16610285.001$zACADEMIC - General Engineering & Project Administration
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio16610285.002$zACADEMIC - Aerospace & Radar Technology
852 8 $blweb$hEBOOKS