Record ID | marc_columbia/Columbia-extract-20221130-034.mrc:107739205:2839 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-034.mrc:107739205:2839?format=raw |
LEADER: 02839cam a2200445 i 4500
001 16889546
005 20221101100824.0
008 211205t20222022enka b 000 0 eng d
024 $a40031301263
035 $a(OCoLC)on1287200815
040 $aYDX$beng$erda$cYDX$dUKMGB$dEAU$dOCLCF$dCDX
019 $a1287125941
020 $a1108987001$q(pbk.)
020 $a9781108987004$q(pbk.)
020 $z9781108982009$q(PDF ebook)
020 $z9781108989923$q(PDF ebook)
035 $a(OCoLC)1287200815$z(OCoLC)1287125941
050 4 $aBC135$b.S53 2022
082 04 $a160$223
100 1 $aShapiro, Stewart,$d1951-$eauthor.
245 10 $aClassical first-order logic /$cStewart Shapiro, Teresa Kouri Kissel.
246 3 $aClassical 1st-order logic
264 1 $aCambridge :$bCambridge University Press,$c2022.
264 4 $c©2022
300 $a71 pages :$billustrations ;$c23 cm.
336 $atext$btxt$2rdacontent
336 $astill image$bsti$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aCambridge elements. Philosophy and logic,$x2516-4171
504 $aIncludes bibliographical references (pages [66]-71).
505 0 $a1. Introduction -- Classical first-order logic : 2. Formal system -- 3. Language -- 4. Deduction -- 5. Model-theoretic semantics -- 6. Meta-theory -- Alternatives to classical first-order logic : 7. Classical higher-order logic -- 8. Intuitionism -- 9. Paraconsistency : demurring from ex falso quodlibet -- 10. Conclusion -- References.
520 $a"One is often said to be reasoning well when one is reasoning logically. Many attempts to say what logical reasoning is have been proposed, but one commonly proposed system is classical first-order logic. This Element will examine the basics of classical first-order logic and discuss some surrounding philosophical issues. The first half of the Element develops a language for the system, as well as a proof theory and model theory. The authors provide theorems about the system they developed, such as unique readability and the Lindenbaum lemma. They also discuss the meta-theory for the system, and provide several results there, including sketching a proof of the soudness and completeness theorems. The second half of the Element compares classical first-order logic to other systems: classical higher-order logic, intuitionistic logic, and several paraconsistent logics which reject the law of ex falso quodlibet"--$cPage 4 of cover.
650 0 $aFirst-order logic.
650 0 $aLogic, Symbolic and mathematical.
650 7 $aLogic, Symbolic and mathematical.$2fast$0(OCoLC)fst01002068
700 1 $aKissel, Teresa Kouri,$eauthor.
776 08 $iebook version :$z9781108982009
830 0 $aCambridge elements.$pElements in philosophy and logic.
852 00 $bglx$hBC135$i.S53 2022