It looks like you're offline.
Open Library logo
additional options menu

MARC Record from Library of Congress

Record ID marc_loc_2016/BooksAll.2016.part37.utf8:167035694:2903
Source Library of Congress
Download Link /show-records/marc_loc_2016/BooksAll.2016.part37.utf8:167035694:2903?format=raw

LEADER: 02903cam a22004454a 4500
001 2010045223
003 DLC
005 20120530083730.0
008 101123s2011 njua b 001 0 eng
010 $a 2010045223
020 $a9780470641835 (cloth)
020 $a0470641835 (cloth)
020 $a9781118023433
020 $a1118023439
020 $a9781118023464
020 $a1118023463
020 $a9781118023471
020 $a1118023471
035 $a(OCoLC)ocn685239939
040 $aDLC$cDLC$dYDX$dCDX$dYDXCP$dOIP$dZ@L$dDEBBG$dDLC
042 $apcc
050 00 $aQ325.5$b.K85 2011
082 00 $a006.3/1$222
084 $aST 300$2rvk
100 1 $aKulkarni, Sanjeev.
245 13 $aAn elementary introduction to statistical learning theory /$cSanjeev Kulkarni, Gilbert Harman.
260 $aHoboken, N.J. :$bWiley,$cc2011.
300 $axiv, 209 p. :$bill. ;$c24 cm.
490 1 $aWiley series in probability and statistics
504 $aIncludes bibliographical references and indexes.
505 0 $aIntroduction: Classification, Learning, Features, and Applications -- Probability -- Probability Densities -- The Pattern Recognition Problem -- The Optimal Bayes Decision Rule -- Learning from Examples -- The Nearest Neighbor Rule -- Kernel Rules -- Neural Networks: Perceptrons -- Multilayer Networks -- PAC Learning -- VC Dimension -- Infinite VC Dimension -- The Function Estimation Problem -- Learning Function Estimation -- Simplicity -- Support Vector Machines -- Boosting -- Bibliography.
520 $a"A joint endeavor from leading researchers in the fields of philosophy and electrical engineering An Introduction to Statistical Learning Theory provides a broad and accessible introduction to rapidly evolving field of statistical pattern recognition and statistical learning theory. Exploring topics that are not often covered in introductory level books on statistical learning theory, including PAC learning, VC dimension, and simplicity, the authors present upper-undergraduate and graduate levels with the basic theory behind contemporary machine learning and uniquely suggest it serves as an excellent framework for philosophical thinking about inductive inference"--Back cover.
650 0 $aMachine learning$xStatistical methods.
650 0 $aPattern recognition systems.
700 1 $aHarman, Gilbert.
830 0 $aWiley series in probability and statistics.
856 $uhttp://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=024567239&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA$zInhaltsverzeichnis
856 42 $3Contributor biographical information$uhttp://www.loc.gov/catdir/enhancements/fy1210/2010045223-b.html
856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy1210/2010045223-d.html
856 41 $3Table of contents only$uhttp://www.loc.gov/catdir/enhancements/fy1210/2010045223-t.html