Record ID | marc_loc_2016/BooksAll.2016.part38.utf8:227432891:1437 |
Source | Library of Congress |
Download Link | /show-records/marc_loc_2016/BooksAll.2016.part38.utf8:227432891:1437?format=raw |
LEADER: 01437cam a22002897a 4500
001 2011275230
003 DLC
005 20120108081049.0
008 111129s2011 si a b 001 0 eng d
010 $a 2011275230
016 7 $a015960134$2Uk
020 $a9789814360739 (hbk.)
020 $a9814360732 (hbk.)
035 $a(OCoLC)ocn757736684
040 $aVA@$cVA@$dBTCTA$dYDXCP$dSINLB$dUKMGB$dBWX$dMUU$dDLC
042 $alccopycat
050 00 $aQA403$b.W358 2011
082 04 $a515.2433$222
100 1 $aWang, Baoxiang.
245 10 $aHarmonic analysis method for nonlinear evolution equations, I /$cBaoxiang Wang ... [et al.].
260 $aSingapore ;$aHackensack, N.J. :$bWorld Scientific Pub. Co.,$cc2011.
300 $axiv, 283 p. :$bill. ;$c24 cm.
504 $aIncludes bibliographical references (p. 269-280) and index.
505 0 $a1. Fourier multiplier, function space X [superscript]s [subscript]p,q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff.
650 0 $aHarmonic analysis.
650 0 $aDifferential equations, Nonlinear.
650 0 $aMathematical analysis.