Record ID | marc_loc_2016/BooksAll.2016.part38.utf8:243310314:8347 |
Source | Library of Congress |
Download Link | /show-records/marc_loc_2016/BooksAll.2016.part38.utf8:243310314:8347?format=raw |
LEADER: 08347cam a22003137a 4500
001 2011290135
003 DLC
005 20120207084544.0
008 110729s2010 si a b 001 0 eng d
010 $a 2011290135
020 $a9789814271554
020 $a9814271551
035 $a(OCoLC)ocn588366675
040 $aSINTU$cSINTU$dBTCTA$dYDXCP$dTXA$dUBF$dCAI$dUV0$dUPM$dCDX$dDLC
042 $alccopycat
050 00 $aTK7874.78$b.Y46 2010
082 04 $a621.38132$222
100 1 $aYeo, Kiat Seng,$d1964-
245 10 $aDesign of CMOS RF integrated circuits and systems /$cKiat Seng Yeo, Manh Anh Do, Chirn Chye Boon.
260 $aSingapore :$bWorld Scientific,$c2010.
300 $axv, 341 p. :$bill. ;$c24 cm.
504 $aIncludes bibliographical references and index.
505 0 $aChapter 1. RF CMOS Systems on Chips -- 1.1. Modern RF Mobile Technologies -- 1.2. The RF Transceiver System -- 1.3. Modulation and Demodulation Techniques -- 1.4. Multiple Access Techniques -- 1.5. Receiver Sensitivity and Linearity -- 1.6. On-chip Power Amplifier -- 1.7. The Cellular Phone Concept -- 1.8. The CMOS RF Technology -- References -- Chapter 2. RF CMOS Devices and Process Design Kits -- 2.1. Introduction -- 2.2. RF Transistors -- 2.2.1. BSIM3v3 Model -- 2.2.2. BSIM4 Model -- 2.2.3. Figure of Merit -- 2.2.3.1. fT definition and extraction -- 2.2.3.2. fMAX definition and extraction -- 2.2.4. RF Parasitics in MOSFETs -- 2.2.5. Scalable RF CMOS Transistor Modeling -- 2.2.5.1. RF MOSFET model -- 2.2.5.2. Gate resistance modeling -- 2.2.5.3. Source and drain resistance modeling -- 2.2.5.4. Gate to substrate capacitance and resistance modeling -- 2.2.5.5. Gate to source and gate to drain capacitance modeling -- 2.2.5.6. Drain to source capacitance modeling -- 2.2.5.7. Substrate resistance modeling -- 2.3. On-chip Inductors -- 2.3.1. Spiral Inductors on Silicon -- 2.3.1.1. Figure of merits -- 2.3.2. Advantages of Silicon-based Spiral Inductors -- 2.3.3. Identifying Loss Mechanisms in Silicon-based Spiral Inductors -- 2.3.3.1. Metallization resistive loss -- 2.3.3.2. Substrate capacitive and resistive loss -- 2.3.3.3. Substrate eddy current -- 2.3.4. Q-Factor Enhancement Techniques -- 2.3.4.1. Q-factor enhancement using processing technologies -- 2.3.4.2. Q-factor enhancement using active inductors -- 2.3.4.3. Q-factor enhancement using coupled spiral coils -- 2.3.4.4. Q-factor enhancement using layout optimization -- 2.3.4.5. Q-factor enhancement using inductor device model -- 2.3.4.6. Figure of merits for differential spiral inductors -- 2.4. Baluns/Transformers -- 2.4.1. The Ideal Transformer -- 2.4.2. Transformer Types -- 2.4.3. Inductance, Capacitance, and Resistance -- 2.4.4. Coupling Coefficient k, Turn Ratio n, and Quality Factor Q -- 2.4.5. Patterned Ground Shield -- 2.4.6. Designing the Transformer -- 2.5. RF Interconnects -- 2.5.1. Transmission Line Concept -- 2.5.1.1. Transmission line constants -- 2.5.1.2. Transmission line impedances -- 2.5.1.3. Reflection and voltage standing wave ratio -- 2.5.1.4. Frequency-dependent charge distribution -- 2.5.1.5. Effects of dielectric on interconnects -- 2.5.2. Existing Methodologies to Tackle Post Layout Parasitics -- 2.5.3. Proposed Figure of Merit for RF Interconnects -- 2.6. Varactors -- 2.6.1. Functions of Varactors -- 2.6.2. Varactor Design -- 2.7. RF Capacitors -- 2.7.1. Capacitance -- 2.7.2. Geometry -- 2.7.3. Quality Factor and Series Resistance -- 2.7.4. Capacitance Modeling -- 2.7.5. Impedances -- 2.7.6. Design Considerations -- 2.8. Process Design Kits -- 2.8.1. Benefits -- 2.8.2. Advanced Device Modeling and Front-end Design -- 2.8.3. Back-end Design and Accelerated Layout -- 2.8.4. Physical Verification and Silicon Analysis -- 2.8.5. Future of Process Design Kits -- 2.9. Summary -- References -- Chapter 3. RF CMOS Low Noise Amplifiers -- 3.1. Basic Concepts of LNAs -- 3.1.1. Operating Frequency -- 3.1.2. Sensitivity -- 3.1.3. Noise Figure and Voltage Gain -- 3.1.4. 1 -dB Compression Point -- 3.1.5. The 3rd Order Intercept Point -- 3.1.6. S-Parameters -- 3.2. Input Architecture of LNAs -- 3.2.1. Common Source Stage with Resistive Termination -- 3.2.2. Common Gate Stage -- 3.2.3. Common Source Stage with Shunt Feedback -- 3.2.4. Common Source Stage with Source Inductive Degeneration -- 3.3. Input Matching Analysis -- 3.4. Design of a Single-band LNA (LNA1) -- 3.4.1. Noise Figure Optimization -- 3.4.2. Design Methodology -- 3.4.3. Measurement Results -- 3.5. Summary -- References -- Chapter 4. RF Mixers -- 4.1. Introduction -- 4.2. Common Configurations of Active Mixers -- 4.3. Active Mixer with Current Booster -- 4.4. Passive Mixers -- 4.5. Port Isolation and DC Offset in Direct Conversion Mixers -- 4.6. Image Reject Mixers for Low IF Architectures -- References -- Chapter 5. RF CMOS Oscillators -- 5.1. Introduction -- 5.1.1. Ring Oscillator -- 5.1.2. LC Oscillator -- 5.2. Various LC VCO Topologies -- 5.2.1. Colpitts and HartleyLC VCOs -- 5.2.2. Differential LC VCOs -- 5.2.2.1. Complementary LC VCOs -- 5.2.2.2. Tail current source of LC VCOs -- 5.3. LC VCO Design Methodology -- 5.3.1. Topology -- 5.3.1.1. Operation theory -- 5.3.1.2. Equivalent circuit of cross-coupled LC tank VCO -- 5.3.2. Associated Noise Sources of Complementary LC Tank VCO -- 5.3.2.1. Noise sources of the LC tank -- 5.3.2.2. Upconversion of 1/f noise in the tail transistor -- 5.3.3. Noise Sources in Active Devices -- 5.3.3.1. High frequency noise -- 5.3.3.2. Noise sources in cross-coupled transistors -- 5.3.3.3. Optimization of channel length Lch -- 5.3.4. Linear Time Variant (LTV) Phase Noise Analysis -- 5.3.4.1. Definition of Impulse Sensitivity Function (ISF)-Γ(ω0t) -- 5.3.4.2. Parameterized phase impulse response hφ (t, τ) using ISF -- 5.3.4.3. Phase noise calculation -- 5.3.4.4. Steps to achieve minimal phase noise -- 5.3.5. A 2GHz Cross-Coupled LC Tank VCO -- 5.3.5.1. 2GHz cross-coupled LC tank VCO -- 5.3.5.2. Verifications and discussions -- 5.3.5.3. Experimental results -- 5.3.6. A 9.3 ̃10.4GHz Cross-Coupled Complementary Oscillator -- 5.3.6.1. Phase noise estimation for 10GHzLC tank VCO -- 5.3.6.2. Experimental results -- 5.4. Summary -- References -- Chapter 6. RF CMOS Phase-Locked Loops -- 6.1. Fundamental Principles of a Phase-Locked Loop (PLL) -- 6.2. Transient Characteristics - Tracking -- 6.3. Loop Bandwidth - Second Order PLL -- 6.4. Acquisition -- 6.5. Phase Detector and Loop Filter -- 6.5.1. Phase Detector -- 6.5.1.1. Multiplier -- 6.5.1.2. EXOR gate -- 6.5.1.3. Flip-flop phase detector -- 6.5.1.4. Phase frequency detector -- 6.5.2. Loop Filter -- 6.6. Charge Pump PLL Filter -- 6.7. Noise Characteristics of PLL Building Blocks -- 6.7.1. Phase Noise of VCO -- 6.7.2. Phase Noise of Reference Input Signal -- 6.7.3. Phase Noise of Frequency Divider -- 6.7.4. Phase Noise of Loop Filter -- 6.7.5. Optimum Loop Bandwidth -- 6.8. Summary -- References -- Chapter 7. RF CMOS Prescalers -- 7.1. Prescaler -- 7.1.1. Dual-Modulus Prescaler -- 7.1.2. Dual-Modulus Prescaler with Pulse Swallow Counter -- 7.1.3. Integer-N Architecture through Dual-Modulus Prescaler with Pulse Swallow Counter -- 7.2. DFFs for Prescaler -- 7.2.1. MCML -- 7.2.2. CMOS Dynamic Circuit -- 7.3. Design and Optimization of CMOS Dynamic Circuit (CDC) Based Prescaler -- 7.3.1. E-TSPC Based Divide-by-2 Unit -- 7.3.2. E-TSPC Based Divide-by-2/3 Unit -- 7.3.3. Design Example -- 7.3.4. Simulation and Silicon Verifications -- 7.4. Summary -- References.
520 1 $a"This book provides the most comprehensive and in-depth coverage of the latest circuit design developments in RF CMOS technology. It is a practical and cutting-edge guide, packed with proven circuit techniques and innovative design methodologies for solving challenging problems associated with RF integrated circuits and systems. This invaluable resource features a collection of the finest design practices that may soon drive the system-on-chip revolution. Using this book's state-of-the-art design techniques, one can apply existing technologies in novel ways and to create new circuit designs for the future."--BOOK JACKET.
650 0 $aRadio frequency integrated circuits.
650 0 $aMetal oxide semiconductors, Complementary.
650 0 $aWireless communication systems.
700 1 $aDo, Manh Anh.
700 1 $aBoon, Chirn Chye.