Record ID | marc_loc_2016/BooksAll.2016.part40.utf8:123522620:2731 |
Source | Library of Congress |
Download Link | /show-records/marc_loc_2016/BooksAll.2016.part40.utf8:123522620:2731?format=raw |
LEADER: 02731cam a2200397 i 4500
001 2012500279
003 DLC
005 20151209074802.0
008 121105s2012 fr a b 000 0 eng d
010 $a 2012500279
016 7 $a016190388$2Uk
020 $a9782856293430 (pbk.)
020 $a2856293433 (pbk.)
035 $a(OCoLC)ocn813048595
040 $aBTCTA$beng$cCUD$dOCLCO$dUKMGB$dYDXCP$dCRU$dMUU$dHDC$dMUU$dBTCTA$dBWX$dZCU$dOCLCF$dVRC$dOCLCQ$dUWO$dDLC$erda
041 0 $aeng$bfre
042 $alccopycat
050 00 $aQA379$b.M585 2012
100 1 $aMitrea, Marius.
245 10 $aBoundary value problems for the Stokes system in arbitrary Lipschitz domains /$cMarius Mitrea & Matthew Wright.
264 1 $aParis :$bSocieté mathématique de France,$c©2012.
300 $aviii, 241 pages :$billustrations ;$c24 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aAstérisque,$x0303-1179 ;$v344
500 $aRevision of Matthew Wright's 2008 Ph. D. dissertation where Marius Mitrea was dissertation supervisor.
504 $aIncludes bibliographical references.
505 0 $a1. Introduction -- 2. Smoothness spaces and Lipschitz domains -- 3. Rellich identities for divergence form, second-order systems -- 4. The Stokes system and hydrostatic potentials -- 5. The Lp[superscript] transmission problem with p near 2 -- 6. Local L² estimates -- 7. The transmission problem in two and three dimensions -- 8. Higher dimensions -- 9. Boundary value problems in bounded Lipschitz domains -- 10. The Poisson problem for the Stokes system -- 11. Appendix.
546 $aAbstract also in French.
520 3 $aThe goal of this work is to treat the main boundary value problems for the Stokes system, i.e., (i) the Dirichlet problem with Lp-data and nontangential maximal function estimates, (ii) the Neumann problem with Lp-data and nontangential maximal function estimates, (iii) the Regularity problem with Lp1-data and nontangential maximal function estimates, (iv) the transmission problem with Lp-data and nontangential maximal function estimates, (v) the Poisson problem with Dirichlet condition in Besov-Triebel-Lizorkin spaces, (vi) the Poisson problem with Neumann condition in Besov-Triebel-Lizorkin spaces, in Lipschitz domains of arbitrary topology in Rn, for each n [greater than or equal to] 2. Our approach relies on boundary integral methods and yields constructive solutions to the aforementioned problems.
650 0 $aBoundary value problems.
650 0 $aDifferential equations, Elliptic.
700 1 $aWright, Matt,$d1980-
710 2 $aSociété mathématique de France.
830 0 $aAstérisque ;$v344.